
Universität Karlsruhe (TH)
Fakultät für Informatik
Institut für Technische Informatik

Lehrstuhl Prof. Dr. J. Henkel

Study Thesis

Yinspire – A performance efficient
simulator for spiking neural nets

Michael Neumann
mneumann@ntecs.de

Nov. 2007 - May 2008

Supervisors:
Dipl.-Inform. F. Kaiser
Dr. F. Feldbusch

mneumann@ntecs.de

Yinspire – a novel discrete-event and process-oriented simulator for spiking neural
nets is presented, which focuses both on performance and on clean, object-oriented
design. Performance is mainly achieved by using a divide-and-conquer approach for the
priority queue that maintains the pending event set, but also by careful implementation.
Benchmarks show that Yinspire performs an order of magnitude better than an existing
simulator called Inspire1. It’s clean and concise implementation will hopefully aid
further research by serving as a stable foundation to build upon.

Im Rahmen dieser Studienarbeit entstand Yinspire – ein neuer in C++ implemen-
tierter, ereignisgesteuerter und prozessorientierter Simulator für gepulste Neuronale
Netz. Zielsetzung der Arbeit ist es gewesen, eine hohe Performanz bei der Simulation
zu erreichen. Daher wurde bei der Implementierung besonderes Augenmerk auf die
Performanz sowie auf eine saubere, objekt-orientierte Architektur gelegt. Die hohe Per-
formanz – Messungen bescheinigen Yinspire eine um mindestens eine Grössenordnung
höhere Performanz im Vergleich zu dem Simulator Inspire1 – wird hauptsächlich durch
einen divide-and-conquer Ansatz erzielt, wobei die globale Prioritätswarteschlange,
zuständig für die ereignisgesteuerte Simulation, in mehrere lokale Warteschlangen in-
telligent aufgeteilt wird. Weiterhin wird die Performanz durch eine saubere Program-
mierung sowie durch die bewusste Wahl von entsprechenden Konstrukten erhöht.

Die saubere Implementierung von Yinspire wird hoffentlich die zukünftige Forschung
an gepulsten Neuronalen Netzen erleichtern und als Grundgerüst für weitere Entwick-
lungen dienen.

1[Feldbusch and Kaiser, 2005] [Weiß, 2005]

I hereby declare that I wrote this thesis myself without sources other than those indi-
cated herein. All parts taken from published and unpublished scripts are indicated as
such.

Karlsruhe, 08.05.2008

Michael Neumann

Contents

Nomenclature 7

1 Introduction 9
1.1 Overview . 9

2 Architecture and Implementation 11
2.1 Overview . 11
2.2 Scheduling . 13

2.2.1 Introduction . 13
2.2.2 Event-driven Simulation . 13
2.2.3 Process-oriented Simulation . 14
2.2.4 Implementation of Yinspire . 15

2.3 Neural Core . 20
2.3.1 Overview . 20
2.3.2 Allocating and initializing entities 21
2.3.3 Connecting entities . 22
2.3.4 Stimulating entities . 23
2.3.5 Processing stimuli . 23
2.3.6 A typical Interaction between Entities 24

2.4 Structural Entities . 28
2.5 Models . 29

2.5.1 Neuron_SRM01 . 30
2.5.2 Neuron_SRM02 . 33
2.5.3 Neuron_LIF01 . 36
2.5.4 Neuron_Input . 39
2.5.5 Neuron_Output . 41
2.5.6 Synapse_Default . 42
2.5.7 Synapse_Hebb . 43

2.6 Miscellaneous Classes . 45
2.7 The Yin File Format . 46
2.8 Converters . 48
2.9 Command-Line Interface . 48

3 Extending Yinspire 51
3.1 Embedding Yinspire . 51

3.1.1 Compilation . 51
3.2 Implementing a new Model . 54

5

Contents

4 Installation 57
4.0.1 Unix . 57
4.0.2 Windows . 57
4.0.3 Cross-Compilation . 58

5 Interfaces to Foreign Languages 61
5.1 Ruby Interface . 61

5.1.1 Installation . 61
5.1.2 Usage . 61
5.1.3 Reference . 63

5.2 Octave/Matlab Interface . 64
5.2.1 Installation . 64
5.2.2 Usage . 65
5.2.3 Reference . 65

6 Prototypes 69
6.1 Yinspire in Cplus2Ruby . 69

6.1.1 How it works . 69
6.1.2 Installation and Usage . 71
6.1.3 Conclusion . 72

6.2 An Editor for Neural Nets . 72

7 Performance Benchmark 75
7.1 Benchmark Setup . 75
7.2 Benchmark Procedure . 75
7.3 Results . 76
7.4 Validation . 78
7.5 Conclusion . 79

8 Benchmarking Priority Queues 81
8.1 Results . 82
8.2 Conclusion . 82

9 Performance Tips 87

10 Outlook 89

Bibliography 94

6

Nomenclature

• Discrete Event Simulation (DES): “In discrete-event simulation, the operation of
a system is represented as a chronological sequence of events. Each event occurs
at an instant in time and marks a change of state in the system. [Wikipedia]”

• Process-oriented Simulation: “In process-oriented simulation, the real system is
modeled as collection of processes, each competing for the resources of the system.
A process management facility allows processes to become active, to operate in the
simulated environment, and to eventually terminate. The process management
facility is capable of managing many active processes so that they each appear to
be active at the same time. This "pseudo parallelism" for simultaneously active
processes is a very important feature of process-oriented simulation. [Schwetman,
1990]”. In spiking neural nets process-oriented simulation is used for neuron
models that need to solve differential equations which describe the course of
potential over time.

• Stepped scheduling : This term is used in Yinspire as a synonym for process-
oriented simulation.

• Pending Event Set (PES): In an event-driven simulator, the pending event set
contains all future events. Maintaining and scheduling this pending event set is
the core task of any event-driven simulator. A commonly used data structure for
this purpose is the priority queue.

• Event, Spike, Stimulus and Stimuli (plural): They are all used interchangeably
throughout the text. An event marks a change of state in the system. In the
context of spiking neural nets, we prefer the terms spike and stimulus over the
more technical and implementation specific term event.

• Spiking Neural Net (SNN): Spiking neural nets are an extension of artifical neural
nets for the concept of time, leading to a more realistic model of neural simulation.

• Pulsed Neural Net : Synonym for spiking neural net.

• Scheduler : The part of the event-driven simulator that implements the chrono-
logical scheduling of events, or in case of process-oriented simulation, the part
which manages the processes. In Yinspire this term is used interchangably with
the term simulator, as Yinspire unifies both event-driven and process-oriented
simulation.

• Simulator : In Yinspire this term is used interchangably with the term scheduler,
as both event-driven and process-oriented simulation are unified. Note however
that the classes Scheduler and Simulator are not used interchangably in this text!

7

Nomenclature

• Schedule Entity : In Yinspire, this refers to an entity that is subject of being
scheduled by the scheduler.

• Neural Entity : In Yinspire, this refers to an entity that is part of a neural net,
for example a neuron or synapse.

• Inspire: A simulator for spiking neural nets developed at the University of Karl-
sruhe [Feldbusch and Kaiser, 2005] [Weiß, 2005].

8

1 Introduction

Researchers in the field of spiking neural nets and reservoir computing1 demand for
high-performance simulations of neural nets. To cope with this growing demand, Yin-
spire is presented, which is a new implementation of a discrete-event and process-
oriented spiking neural net simulator written from scratch in C++. It focuses both on
performance and on clean design, achieving both aspects at the same time by using
a novel divide-and-conquer approach for the priority queue – the heart of almost ev-
ery discrete-event simulator – which maintains the pending event set. This leads to a
much more generalized architecture where each entity in a neural net is responsible for
maintaining its own set of events in a local priority queue – an approach resembling
more closely the behaviour found in real nature, with a number of advantages:

• Decisions about how and where to store events (or if at all) can be made locally,
leading to a whole new area for performance improvements.

• Aggregation of events (possibly adaptive) with same or similar time becomes easy.

• More efficient storage of events.

Yinspire further generalizes the architecture in regard to the following:

• Unified event-driven and process-oriented simulation (no separate base classes).

• Synapses are first-class objects.

• No need for special hebbsch neurons as every neuron can now act as hebbsch
neuron.

1.1 Overview

In Chapter 2, the Architecture and Implementation of Yinspire is described in detail.
Chapter 3 explains how to extend Yinspire for new neuron or synapse models and how
to use Yinspire within your own applications. Chapter 4 deals with the Installation of
Yinspire, i.e. how to compile Yinspire on your system, while Chapter 5 Interfaces to
Foreign Languages introduces the Ruby and Matlab interfaces to Yinspire by giving
examples, but also includes a (boring) function reference. The Chapter 6 about Proto-
types presents two prototypes that emerged out of this study thesis: An implementation
of Yinspire in a combination of Ruby and C++ and a graphical neural net editor. In
Chapter 7 Performance Benchmark, Yinspire is compared against the old simulator

1for example: liquid state machines

9

1 Introduction

Inspire [Feldbusch and Kaiser, 2005] [Weiß, 2005] showing an increase in performance
of at least an order of magnitude. Chapter 8 Benchmarking Priority Queues further
compares various priority queue algorithms using the Classic Hold model [Jones, 1986].
Performance Tips are given in Chapter 9, while Chapter 10 Outlook lists possible items
to be done by future study theses.

10

2 Architecture and Implementation

2.1 Overview

In Figure 2.1 the overall architecture of Yinspire using UML notation is shown, leaving
out a lot of minor details like miscellaneous classes which are not required for simulation.
To make it easier to understand, the diagram is logically split into the following four
fragments:

• Scheduling : Forms the abstract core of an event-driven and process-oriented sim-
ulator. Class Scheduler implements the simulator which schedules instances of
class ScheduleEntity. See Section 2.2.

• Neural Core: Class NeuralEntity extends class ScheduleEntity for operations
specific to spiking neural nets and also serves as the base class and interface for
all further entities in a neural net. See Section 2.3.

• Structural entities: Class NeuralEntity is further subclassed by Neuron and
Synapse, adding structure eminent for neurons and synapses: While neurons can
have many pre- and post-synapses, synapses must have exactly one pre- and one
post-neuron. This is the fragment where all further structural related behaviour
in form of base classes should go, for instance the structure of multi-compartment
models. See Section 2.4.

• Models: Contains all neural-net related classes which implement behaviour, like
for example Neuron_SRM01, a neuron type that uses the simple response model,
or Synapse_Default, the most basic implementation of a synapse. To avoid un-
necessary repetition, common behaviour is extracted into superclasses like Neu-
ron_Base and Synapse_Base. See Section 2.5.

This chapter contains further information about various utility classes, like Loaders
and Dumpers, which are briefly described in Section 2.6. A description about the Yin
file format used by Yinspire as an external notation for neural nets can be found in
Section 2.7, converters to and from legacy file formats are described in Section 2.8 and
for the command-line interface of Yinspire itself see Section 2.9.

11

2 Architecture and Implementation

Figure 2.1: Architecture of Yinspire (UML Notation)

12

2.2 Scheduling

2.2 Scheduling

This section describes the part of Yinspire that implements the event-driven and
process-oriented simulation.

2.2.1 Introduction

In discrete-time simulation the value of some other magnitude is simulated over time.
State changes only at discrete points in time, thus discrete-time simulation. For exam-
ple in case of a CPU simulator, the simulated value would be the state of the register-file
and the status flags, which change as instructions are executed and time progresses. In
the case of discrete-time simulation of spiking neural nets, the state that is simulated
would be some kind of membrane potential of the neurons, which eventually triggers
the firing of neurons when a threshold is reached, which in turn again influences the
membrane potential of other neurons and so on. Two approaches come to mind how
such a discrete-time simulator could be implemented:

• Given the state of the whole neural net at time ti, the next state of the whole
neural net is calculated for time ti+1 = ti + ∆t, where ∆t denotes the smallest
possible time unit. This approach is very well suited when a lot of activity
happens within a neural net and further allows to calculate the next state of the
neural net with the highest possible degree of parallelism. The downside is that
the accuracy of the result and the performance depends heavily on the value of
∆t.

• The state of an individual neuron is only calculated when something changes
that could influence the sate of this neuron. This approach is called event-driven
simulation. For example, the state is only calculated when a neuron receives a
fire impulse through a synapse. For low-activity neural nets this approach is very
efficient as the simulation time can skip time intervals where no activiy occurs.
Furthermore, the accuracy of time is very precise as it isn’t quantified using a ∆t.
The downsides are, that it is much harder to implement as the events have to
be maintained and scheduled for execution using some advanced data structures
like priority queues, that achieving parallelism is very hard if not impossible, and
that the performance depends heavily on the activity in the neural net.

Yinspire mainly uses the second approach – event-driven simulation – but also allows
process-oriented simulation, which is related to the first approach.

2.2.2 Event-driven Simulation

The most basic and common approach to implement an event-driven simulator is to
use one single priority queue which contains all events for all entities subject for being
simulated – neurons and synapses in case of a neural net. A priority queue data
structure is used as it allows for efficient retrieval of elements in sorted order, exactly
what is needed for event-driven simulation. In this context, an event usually represents

13

2 Architecture and Implementation

the firing of a neuron in form of an action potential sent to adjacent entities, while the
priority value used for an event in the priority queue represents the timestamp of its
appearance, which can be further delayed by the propagation delay of synapses1. The
priority queue ensures that events are scheduled in the order of their appearance2.

The core routine of such an event-driven simulator – the event loop – is actually
quite simplistic and consists of just the following steps:

1. Find the event that occurs next in time.

2. Perform some action for this event. For example, recalculate the state of the
neuron this event is targeted at.

3. Remove this event from the priority queue.

4. Repeat with 1. until either the priority queue turns empty or the simulation time
reaches a user-specified limit.

Finding the next event in time is efficiently implemented using a priority queue. The
top() operation of a priority queue returns the element with the highest priority (small-
est event time), whereas the pop() operation removes that element from the priority
queue. To add a new event to the priority queue there is operation push().

2.2.3 Process-oriented Simulation

In contrast to event-driven simulation, process-oriented simulation doesn’t involve
events at all. Instead, processes are used to model behaviour in a way similar to
processes in an operating system or application to model concurrently running ac-
tivities. Those processes are then triggered at equi-distant time steps ∆t, where in
general each entity (for example a neuron) uses one process. In the case of spiking
neural-nets, process-oriented simulation is used for special neuron models that make
use of differential equations to describe the course of their membrane potential. Solv-
ing those differential equations numerically requires a method to be invoked at regular
time intervals, which is the job of the process scheduler. The same could of course be
implemented using an event-driven simulator, though not that efficiently.

One possible implementation of process-oriented simulation is to use two linked lists:
One list that contains all active entities and one list that contains the entities that
should be deactivated and as such removed from the active list. The simulation time is
then increased in equi-distant steps and for each time step all active entities are called
to perform some action. Afterwards, all entities contained in the deactivation list are
removed from the active list, and the whole procedure is repeated.

Yinspire uses a different, much more efficient approach than the two-list approach to
implement process-oriented simulation which will be explained later in Section 2.2.4.
Instead of process-oriented simulation we also refer to stepped scheduling as a synonym.

1In real neural nets it’s the dentrites and axons that delay the signal and not necessarily the synapse.
Despite, for simplicity reasons, it is modelled by default this way in Yinspire.

2Events are usually scheduled to appear in the future.

14

2.2 Scheduling

2.2.4 Implementation of Yinspire

While the old simulator Inspire stores all events of all entities in one global priority
queue, Yinspire only stores the timestamp of the next event for each entity in the
global priority queue, whereas the event itself (i.e. timestamp, weight and origin) has
to be stored somewhere else. Where exactly the event is stored is the responsibility of
the entity that owns the event, i.e. the entity the event is sent to. The default case in
Yinspire is that each entity owns a local priority queue into which events get stored. We
call this architecture with one global priority queue and many local per-entity priority
queues decentralized scheduling, which is further depicted in Figure 2.2.

Not shown in Figure 2.2 is that each element of a local priority queue contains a full
event (timestamp, weight and origin) whereas an element in the global priority queue
only contains the timestamp and a pointer to the entity (the arrow in the figure).
The priority of the top element in a local priority queue always equals that of the
priority used in the global priority queue for that entity. For example the priority for
Neuron1 in the global priority queue is 1.0, which is the same value as the priority of
the top element in Neuron1’s local priority queue. This condition is always met, i.e.
it is invariant. This also means that whenever a local priority queue is modified, for
example an event is removed or added, it’s entry in the global priority queue has to
be potentially updated accordingly. An update in the global priority queue becomes
necessary only when the priority of the top-most element of the corresponding local
priority queue changes.

One step in the process of scheduling is shown in Figure 2.2 (left hand side vs. right)
and is further explained below:

1. Lookup in the global priority queue which entity to schedule next in time. On
the left hand side of the figure, this is Neuron1 (timestamp 1.0). It is always the
top element of the priority queue.

2. For this entity call method process() with the value of the timestamp as pa-
rameter: Neuron1.process(1.0). The timestamp reflects the current simulation
time.

3. Method process() now processes all events with that timestamp and removes
them from the local priority queue. Usually, the stimuli weight of all events are
summed to give the total input stimuli weight, which is then added in some way
to the membrane potential of the entity.

4. Removing events from the local priority queue (in our case this is just the event
with timestamp 1.0) triggers a reschedule in the global priority queue, as the
priority of the top-most element of Neuron1’s local priority queue changes from
1.0 to 2.5. See the right hand side of the figure and notice that the new priority
of Neuron1 in the global priority queue is now 2.5 and that it is scheduled after
Neuron3 (priority 2.3).

5. The same procedure continues with 1.

15

2 Architecture and Implementation

The global priority queue in Yinspire is maintained by class Scheduler. Each entity
in a neural net inherits from class ScheduleEntity, which provides methods related to
scheduling. The interface of both classes is shown in Figure 2.3. Each ScheduleEntity
contains a reference to the Scheduler. This is required as a ScheduleEntity has to be
able to reschedule itself within the global priority queue, which can be accomplished by
calling method schedule_update(entity). The priority of each entity in the global prior-
ity queue is contained within the instance variable schedule_at of class ScheduleEntity.
As such, to schedule itself for a later point in time, a ScheduleEntity has to assign a
new value to schedule_at and then call scheduler->schedule_update(this). This
is exactly how method schedule(at) of class ScheduleEntity is implemented.

Method schedule_run() of class Scheduler contains the main loop that performs
the steps explained above, and only returns if the current simulation time exceed the
stop_at parameter or if the global priority queue turns empty.

The second instance variable of class ScheduleEntity schedule_index reflects the
position of the ScheduleEntity in the global priority queue. This is required to efficiently
modify the priority of a ScheduleEntity in the priority queue, as without knowing the
position of the entry whose priority is going to be modified, we would need to traverse
the whole priority queue to find the corresponding entry – with O(n) time complexity
a costly operation – whereas if we know it’s position we can directly start to rebalance
from that position and the cost drops down to just O(log n). As we use an implicit
binary heap algorithm for the global priority queue (a complete binary heap laid out
in array-form), the position is just the index within the array. You’ll never have to
modify schedule_index yourself as this is the task of the scheduler.

The other instance variables and methods of classes ScheduleEntity and Scheduler
(all that contain the word “step”) are related to process-oriented simulation, which is
also called stepped-scheduling in Yinspire. Process-oriented scheduling in the context of
Yinspire means that a ScheduleEntity can request that it’s process_stepped() method
should be called at regular time intervals. The process_stepped() method will then be
called by the Scheduler with the current simulation time and the length of the time
interval as parameters. This is independent of method process(), which gets called to
process events. The value used as time interval is stored in the schedule_step instance
variable of class Scheduler.

To request stepped scheduling be activated, a ScheduleEntity inserts itself into a
doubly-linked list formed by instance variables schedule_stepping_list_prev and
schedule_stepping_list_next. To disable, it just removes itself from that list. The
root of the list is provided by schedule_stepping_list_root of class Scheduler. In-
serting (enabling) and removing (disabling) from this list is implemented in methods
schedule_enable_stepping() and schedule_disable_stepping().

Process-oriented scheduling is used in Yinspire for example by the neuron model
Neuron_LIF01, which uses the Leaky-Integrate and Fire model. In Neuron_LIF01,
incoming stimuli (i.e. events) activate stepped scheduling, which is then used to com-
pute the course of the membrane potential in method process_stepped() over time
(i.e. for each time step) until the membrane potential falls below a given threshold and
stepped scheduling is deactivated again. In case the membrane potential exceeds the
fire threshold, it will fire and send stimuli to adjacent entities. That is, this neuron

16

2.2 Scheduling

Figure 2.2: Decentralized scheduling architecture of Yinspire

model uses a combination of event-driven and process-oriented simulation. Process-
oriented simulation is only used when the neuron is “active”. To activate a neuron,
events are being used.

Note that the local priority queue is not part of class ScheduleEntity, instead it is
part of the direct subclass NeuralEntity. As such, all methods related to how to store
an event (and what exactly an event is) is implemented within class NeuralEntity and
is explained more detailed in section 2.3. This includes how events are actually sent to
other entities, which is not handled in the underlying section. All that scheduling as
explained in this section provides is a facility to schedule a ScheduleEntity for being
called (method process and/or method process_stepped) at a specific point in time.
Everything else is handled by class NeuralEntity and is explained in section 2.3.

Advantages of Decentralized Scheduling

This new decentralizied approach used by Yinspire is in stark contrast with the old
simulator Inspire which used one global priority queue for all events of all entities. If
you consider that during some simulations a single neuron can have in the range of 106

pending events (at a single time), and the neural net itself consist of several hundreds
to thousands of neurons, this can lead to a huge priority queue which in turn can have
a negative impact on performance.

While performance is likely to increase, splitting – or decentralizing – the priority
queue also leads to a much more generalized architecture where each entity is now
responsible for maintaining it’s own local priority queue. This has a number of advan-
tages:

• Events (stimuli) can be stored more space-efficient (around 30%) in the local

17

2 Architecture and Implementation

Figure 2.3: Scheduling-related classes

priority queues as a pointer to the entity in each event is avoided.

• It’s a lot easier to aggregate events with the same or a similar timestamp.

• Each entity can decide what to do with an incoming event, how to store it or
whether to store it at all. For example the priority queue could be made adaptive,
aggregating more entries when it grows larger, bounding worst case runtime.

• Some neuron types may want to skip incoming events during their absolute re-
fractory period3.

Even if the worst-case time complexity for decentralized scheduling still stays the same
(see the next section for more information) the flexibility we gain has the potential for
a huge increase in performance.

Algorithmic complexity of Decentralized Scheduling

Note that in the following we use a binary heap algorithm for all priority queues and
that an access means an insert or delete-min operation. Assuming we have a net with
n neurons and that the number of events per neuron is q, then the access time for a
unified global priority queue (the “old” approach) is:

Taccessunified
= O (log (n× q))

In the decentralized approach (the “new” approach), the total access time is split into
two components: The access time for the local priority queue and the time required to
rebalance the global priority queue:

Taccesslocal
= O (log q)

3I measured that this alone doubles performance for the benchmark present in Chapter 7.

18

2.2 Scheduling

Trebalanceglobal
= O (log n)

Taccessdecentralized
= Taccesslocal

+ Trebalanceglobal
= O(log (n× q))

While a delete-min operation of the local priority queue always triggers a rebalanc-
ing of the global priority queue, this is not the case for an insert operation, where a
rebalance only happens if the insert would change the earliest timestamp of the local
priority queue. Regardless of this fact, when considering worst-case time complexity
the decentralized approach doesn’t provide an improvement over the unified approach,
whereas in practice nearly half of the time there is no need to rebalance the global
priority queue. Let the rebalancing of the global priority queue occur with probabiliy
p, this gives us:

Taccessdecentralized
(p) = p× Trebalanceglobal

+ Taccesslocal
= O (log (np × q))

For a rebalancing probability of p = 0.5 we get a speedup of the decentralized
approach over the unified approach of:

S0.5 =
log(nq)

log(n0.5q)
> 1

This means that the more neurons we have in our net the higher the gained speedup
will be. As an example Figure 2.4 shows the gained speedup for serveral probabilities
with a net of n=1000 neurons and a small local priority queue size q. Notice that the
real speedup might be different, for example due to improvements in cache locality.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 100 200 300 400 500 600 700 800 900 1000

Sp
ee

du
p

ov
er

 u
ni

fie
d

gl
ob

al
 p

rio
rit

y
qu

eu
e

Local priority queue size

S(x, 0.0)
S(x, 0.1)
S(x, 0.2)
S(x, 0.5)
S(x, 1.0)

Figure 2.4: Speedup of decentralized over unified global priority queue

19

2 Architecture and Implementation

2.3 Neural Core

After having learned about how the scheduling in a neural net is performed, it’s time
to take a closer look at the base class NeuralEntity and the interface it describes. Each
entity in a neural net – mainly neurons and synapses – inherits from class NeuralEntity.
Figure 2.5 on page 21 gives a first impression about it’s interface and the relation to
other classes.

Each NeuralEntity has an id which uniquely identifies it within a neural net. You
can access this id using the get_id and set_id methods. Once set, this shouldn’t be
modified as it is used as key in a Hash. Furthermore, as was mentioned already in the
last section, each NeuralEntity contains a local priority queue – stimuli_pq – which
stores all stimuli4 that have not yet been processed as their timestamp lies ahead in
the future.

To record specific events, for example the incidence of a neuron firing, every Neu-
ralEntity includes a pointer to an instance of class Recorder. This can be accessed using
the getter and setter methods get_recorder and set_recorder. If the pointer is NULL
then no recording is performed for this specific instance of NeuralEntity.

Similarily, the Scheduler can be accessed using the methods set_scheduler and
get_scheduler, inherited from class ScheduleEntity. Before a NeuralEntity can par-
ticipate in a simulation, it must have a valid scheduler assigned. Also note that all
entities must have the same scheduler assigned, otherwise scheduling will not work as
expected.

2.3.1 Overview

To learn more about the purpose of the remaining methods load/dump, connect/disconnect,
stimulate and process lets take a look at the steps involved in loading or creating a neu-
ral net, which are:

1. Allocating and initializing the entities of the net.

2. Connecting the entities according to the structure of the net.

3. Stimulating specific entities (initial stimulation).

Each logical distinct step depends on the former step being complete. For example you
can’t connect to an entitiy that does not yet exist, or, as stimulating an entity might
send stimuli to connected entities, you should not stimulate an entity until it is fully
connected.

When considering the simulation of a neural net, the first two steps shown above
related to setting up a neural net are no longer appropriate. Instead the steps involved
are reduced to the following two:

• Stimulating entities.

• Processing stimuli.
4Note that both words stimuli and event are used interchangably throughout the whole text.

20

2.3 Neural Core

Figure 2.5: NeuralEntity and related classes

Stimulation of entities takes place for example when a neuron fires, in which case it
stimulates its post-synapses, or a synapse which forwards a stimuli to its post-neuron.
Processing of stimuli on the other hand means that in case of a neuron, it calculates
its new state according to the incoming stimuli.

While stimulations either take place at present or lie ahead in the future, processing
the stimuli always occur at present. The latter is required as we need to know all
incoming stimuli in order to calculate the (exact) new state of a neuron, which we can’t
know until present unless we either do some form of prediction (optimistic scheduling)
or are aware of the minimum propagation delay over all synapses; both would assume
some global knowledge that we want to avoid in favor of a more generic simulation
model.

Basically, you can also think of stimulation as a kind of communication that takes
time to travel (propagation delay), whereas the processing is “doing the real work”.

2.3.2 Allocating and initializing entities

Any concrete, i.e. non-abstract, subclass of NeuralEntity is allocated using the operator
new. The constructor of any subclass should not take any arguments as this would
prevent the constructors of all superclasses to be called automatically. This design-
decision basically helps to reduce redundancy. Instead, methods should be favored
over constructors with arguments to set the initial state to user-defined values.

Once an object of class NeuralEntity has been allocated, it should first be given an id
and a scheduler instance assigned using methods set_id and set_scheduler. Afterwards,
the internal state can be set using method load, which loads the internal state from
the passed instance of class Properties. The latter basically serves as a dictionary
containing key/value pairs. The whole procedure is further exemplified in the following
listing:

21

2 Architecture and Implementation

// a l l o c a t e
NeuralEnt ity ∗n = new Neuron_SRM01 ;

// i n i t i a l i z e
n−>set_id ("n1") ;
n−>set_schedu le r (. . .) ;

// load i n t e r n a l s t a t e
Prope r t i e s p ;
p . s e t (" abs_refr_durat ion " , 0 . 5) ;
p . s e t ("hebb" , true) ;
n−>load(&p) ;

The counterpart to method load is method dump, which writes the internal state of
a NeuralEntity back into an instance of class Properties. While using a dictionary of
key/value pairs (class Properties) for the purpose of setting or retrieving the state of
an object might not be the most efficient approach, it is for sure the most generic one,
and considering interfacing with foreign languages like Matlab or Ruby, this approach
clearly pays off.

2.3.3 Connecting entities

Eminent for any net is that its building blocks are somehow connected to each other.
The same applies, of course, to a neural net. In Yinspire, any NeuralEntity can be
connected to any other NeuralEntity by using method connect(target). It connects the
receiver of the method (this) to the entity given as first parameter target. Imagine we
want to connect entity A with B and B with C, we just write:

// Neura lEnt i ty ∗A, ∗B, ∗C;
A−>connect (B) ;
B−>connect (C) ;

Again, this is a very generic interface to connect any two entities together. However,
in a neural net consisting of neurons and synapses you can only connect a neuron with
a synapse or a synapse with a neuron. Furthermore, to allow a specific method of
learning in a neural net, the so called Hebbsches learning, an additional requirement
for synapses and neurons is to know their pre-neurons and pre-synapses respectively,
for the purpose of sending stimuli “the other way round”. To meet this requirement,
method connect takes a second parameter forward which describes the direction of
the connection. This is used internally to “notify” the target that it has received a
connection by calling it’s connect method with the source as first parameter and the
second parameter forward set to false. This should become obvious when looking

22

2.3 Neural Core

at the listing present in Figure 2.6 on page 25, showing the actual implementation of
method connect for the classes Neuron and Synapse.

To remove a connection there is method disconnect with the exact same signature
and notification protocol as used by method connect.

2.3.4 Stimulating entities

Another eminent fact about neural nets is that the components it is build up from –
in general neurons and synapses – somehow communicate with each other by sending
“signals”. This communication can only take place alongside the path of the connections
we talked about in the previous section. In other words, a neuron can send a signal
to it’s post-synapses, a synapse to it’s post-neuron; in the case of Hebbsches learning,
signals are also sent into the reverse direction. Most of the time those signals model a
fire impulse originating either from a neuron or from an external stimulation source.

In Yinspire we call those signals stimuli or events. A stimulus (singular of stimuli)
consists of a timestamp and a weight. To send a stimulus, the receiving entities’ method
stimulate is called. In case of an external stimulation, this would look like:

// Neura lEnt i ty ∗n ;
n−>st imu la t e (4 . 5 , I n f i n i t y , NULL) ;

Here we stimulate NeuralEntity n at time 4.5 with an infinitively strong stimulus
(weight), without specifying the origin of the impulse (NULL). In Yinspire, a value of
infinity has the meaning of spontaneous firing5.

Another good example (see Figure 2.7 on page 26) for method stimulate can be
found within class Synapse_Base, which implements the most basic model of a synapse
by simply forwarding a stimulus adding a propagation delay. It does so by calling
method stimulate of it’s post-neuron with parameters at + delay and it’s own weight
attribute this->weight6. And to prevent infinite cycles in case of Hebbsches learning,
the stimulus is only forwarded if it doesn’t origin from the post-neuron itself.

In contrast to forwarding as performed by synapses, the default behaviour of a neuron
is to store the received stimulus into its local priority queue and to reschedule itself if
neccessary. See method stimulate of class Neuron_Base in Figure 2.7 on page 26 as an
example, where the helper method stimuli_add of class NeuralEntity is used to store
the stimulus into the local priority queue and to reschedule the NeuralEntity in the
global priority queue if neccessary.

2.3.5 Processing stimuli

Back in Section 2.2 Scheduling we learned that method process is called by the Scheduler
whenever a ScheduleEntity (and as such also a NeuralEntity) is scheduled for execution.

5This corresponds to an event type of E_DO_FIRE in Inspire.
6This is not the weight parameter passed-in from the neuron!

23

2 Architecture and Implementation

We also mentioned in another section that while stimulation usually involves the future,
processing of stimuli is always performed at present.

So whenever the Scheduler calls method process (or process_stepped) the first pa-
rameter at refers to the current simulation time, i.e. the present. As at this point in
time we know all the incoming stimuli that the NeuralEntity in question has received,
we are able to calculate its new internal state according to the incoming stimuli. This
is exactly what we do in the various models of neurons. Synapses on the other hand
usually don’t get scheduled because they just forward the stimuli and as such make no
use of the local priority queue. However, new models of synapses, yet to be invented,
might as well use that feature.

To better understand how processing of stimuli works in practice, see the pseudo-
code given for method process in Figure 2.8 on page 26. It uses method stimuli_sum
to sum up the weight of all stimuli in the local priority queue with timestamps less
than at, while at the same time removing them from the local priority queue. Also
note that method stimuli_sum will reschedule the NeuralEntity to the timestamp of
the new top element (with timestamp > at) of the local priority queue. As the result it
returns the total weight of the input stimulus which is further used to calculate the new
state (or potential) of the neuron. Once the potential exceeds a threshold, the neuron
fires. Firing involves notifying the recorder that the neuron has fired, stimulating all
post-synapses as well as resetting its own state.

2.3.6 A typical Interaction between Entities

A typical interaction between entities of different type (Neuron and Synapse) and the
Scheduler is shown in the sequence diagram 2.9. Initially the Scheduler is under control
(event loop) and schedules the next entity. In our case this is Neuron n1, whoose method
process() with the current simulation time gets called. It is assumed that Neuron n1 has
some local events that increase it’s membrane potential such that the neuron fires. As
such, it calls method fire(). Method fire() in turn stimulates all adjacent entities; in our
case it calls method stimulate() of Synapse s12, passing the current simulation time as
parameter t to tell the Synapse s12 that it fired at timestamp t. The implementation of
method stimulate() of class Synapse is then to simply forward the stimulus but delaying
it, i.e. the Synapse adds it’s own propagation delay to the current simulation time and
calls the stimulate method of it’s post neuron n2. Now, the implementation of method
stimulate() of class Neuron is different from that of a Synapse. Here we add the stimulus
to the local priority queue using method stimuli_add(). This in turn might require that
the entity has to be rescheduled in the global priority queue, which is done by calling
the Scheduler’s method schedule_update(). Once this returns, method stimulate()
returns from Neuron n2, then stimulate() returns from Synapse s12 and we are back in
method fire() of Neuron n1. If Neuron n1 would have more than one adjacent entity, it
would call method stimulte() for the next adjacent entity and so on. After that the last
adjacent entity has been informed that Neuron n1 has fired, method fire() returns after
lowering it’s membrane potential accordingly. Finally method process() returns from
Neuron n1 and we are back in the main event loop of class Scheduler (schedule_run),
where the next entity is scheduled and the same procedure starts over again.

24

2.3 Neural Core

void
Neuron : : connect (NeuralEnt ity ∗ target , bool forward=true)
{

i f (forward)
{

post_synapses . push (t a r g e t) ;
ta rget−>connect (this , fa l se) ;

}
else
{

pre_synapses . push (t a r g e t) ;
}

}

void
Synapse : : connect (NeuralEnt ity ∗ target , bool forward=true)
{

i f (forward)
{

post_neuron = ta rg e t ;
ta rget−>connect (this , fa l se) ;

}
else
{

pre_neuron = ta rg e t ;
}

}

Figure 2.6: Method connect of classes Neuron and Synapse

25

2 Architecture and Implementation

void
Synapse_Base : : s t imu la t e (r e a l at , r e a l weight , NeuralEnt ity ∗ s r c)
{

i f (s r c != post_neuron)
{

post_neuron−>st imu la t e (at + delay , this−>weight , this) ;
}

}

void
Neuron_Base : : s t imu la t e (r e a l at , r e a l weight , NeuralEnt ity ∗ s r c)
{

stimuli_add (at , weight) ;
}

Figure 2.7: Method stimulate of classes Synapse_Base and Neuron_Base

void
proce s s (r e a l at)
{

// sum (and remove) a l l s t imu l i wi th timestamps <= at .
r e a l weight = stimuli_sum (at) ;

// c a l c u l a t e new s t a t e
s t a t e = ;

i f (s t a t e > thre sho ld)
f i r e (at , I n f i n i t y) ;

}

void f i r e (r e a l at , r e a l weight)
{

i f (r e co rde r)
recorder−>reco rd_f i r e (this , at , weight) ;

s t imulate_synapses (at , weight) ;

s t a t e = 0 . 0 ; // r e s e t s t a t e
}

Figure 2.8: Pseudo-code of method process

26

2.3 Neural Core

Figure 2.9: A typical interaction between entities of different types.

27

2 Architecture and Implementation

2.4 Structural Entities

In a neural net there are two structural distinct entities: Neurons and synapses. While
neurons can have many pre- and post-synapses, synapses must have exactly one pre- and
one post-neuron. The classes Neuron and Synapse in Yinspire (both direct subclasses
of NeuralEntity) pay attention to exactly this circumstance by implementing just the
structure eminent for neurons and synapses respectively.

Class Neuron stores the pre- and post-synapses in two arrays pre_synapses and
post_synapses. Class Synapse stores the pre- and post-neuron in instance variables
pre_neuron and post_neuron. As C++ is very bad at automatically resolving recursive
dependencies between two classes, and doing it by hand is ugly as well, they all are of
type NeuralEntity. That is, nothing prevents you from storing a synapse in pre_neuron
or post_neuron, or neurons in pre_synapses and post_synapses, other than common-
sense.

For the purpose of convenience, class Neuron additionally contains the two methods
stimulate_pre_synapses(at, weight) and stimulate_post_synapses which iterate over
all pre- and post-synapses calling their stimulate method with the given at and weight
parameters.

28

2.5 Models

2.5 Models

In this section the behaviour of all concrete models of neurons and synapses are de-
scribed. For an overview please take again a look at the bottom of Figure 2.1 on
page 12. To avoid unnecessary repetition, behaviour that is common for neurons and
synapses is extracted into superclasses like Neuron_Base and Synapse_Base. This
does not mean that your own class has to inherit from one of those two classes as you
could also directly subclass from NeuralEntity.

When describing the models in the following sections, for the purpose of readability,
we flatten the inheritance hierarchy and just describe the leaf classes including all
attributes of their superclasses.

29

2 Architecture and Implementation

2.5.1 Neuron_SRM01

Class Neuron_SRM01 is based on the Spike Response Model (SRM) using a dynamic
threshold to model refractoriness and corresponds to the KernelbasedLIF model of
Inspire. The core of the implementation is given in Figure 2.10 on page 32 and is
further described below.

Behaviour

Incoming stimuli (method stimulate) are rejected if they are known to fall within the
current absolute refractory period (if any). Otherwise, they are stored in the local
priority queue and the neuron is potentially rescheduled. It still might be the case that
a stimulus stored in the local priority queue falls within an absolute refractory period
if its occurrence is farther ahead in time, as we can’t predict future absolute refractory
periods.

Once the neuron gets scheduled (method process), we first sum up (and remove)
all stimuli that occured prior to the current time at storing the sum of weights into
variable weight (line 16). Afterwards we determine whether we are still in the absolute
refractory period or not (line 22), in which case there’s nothing further to do for us.
If not within the absolute refactory period, we continue with calculating the new state
of the neuron – its mebrane potential – according to equations (2.1) and (2.2). This
involves an exponential decay of the membrane potential and the weight of all incoming
stimuli (variable weight).

decay = exp(
−(tat − tlastSpikeT ime)

taum
) (2.1)

mempot = weight + mempot ∗ decay (2.2)

As calculating the decay of the membrane potential depends on the last spike time,
the last spike time has to be updated as well (line 30). Then we calculate the dynamic
threshold (lines 33-34) according to equations (2.3) and (2.4).

decayThreshold = exp(
−(tat − tlastF ireT ime − tabsRefrDuration)

tauref
) (2.3)

threshold = constThreshold + refWeight ∗ decayThreshold (2.4)

Again this involves an exponential decay, but this time the duration since the last fire
time (minus the duration of the absolute refractory period) is used instead of the dura-
tion since the last spike time. The dynamic threshold is used to model ref ractoriness
after a firing, which is where the prefix and suffix in ref_weight and tau_ref stems
from.

Finally, if the membrane potential exceeds the dynamic threshold, the neuron fires
by sending stimuli to its post-synapses (in case of hebbsch behaviour to its pre-synapses
as well) and resetting its membrane potential back to zero (lines 37-42).

30

2.5 Models

The initial value of last_fire_time and last_spike_time has been carefully choosen
to be -Infinity which has the nice property of avoiding any conditionals in the calcu-
lations shown above in regard to the border case when no former fire or spike occured.
To prove correct behaviour, lets see the outcome of the calculated variables for this
border case:

lastF ireT ime = lastSpikeT ime = −∞

delta = ∞ ≥ 0

decay = decayThreshold = exp(−∞) = 1/exp(∞) = 1/∞ = 0

mempot = weight

threshold = constThreshold

This is exactly the expected behaviour.

Parameters

The parameters of a Neuron_SRM01 are given in Table 2.1.

Parameter Description Default value
abs_refr_duration Duration of absolute refractory period 0.0
last_spike_time Last spike time -Infinity (never)
last_fire_time Last firing time -Infinity (never)
hebb Hebbsch behaviour false
tau_m Membrane time constant 0.0
tau_ref Threshold time constant 0.0
ref_weight Threshold weight factor 0.0
mem_pot Membrane potential 0.0
const_threshold Constant threshold 0.0

Table 2.1: Parameters of Neuron_SRM01

31

2 Architecture and Implementation

1 void
2 s t imu la t e (r e a l at , r e a l weight)
3 {
4 // Enqueue s t imu l i to l o c a l p r i o r i t y queue un l e s s in
5 // a b s o l u t e r e f r a c t o r y per iod
6 i f (at >= las t_f i r e_t ime + abs_refr_durat ion)
7 {
8 stimuli_add (at , weight) ;
9 }

10 }
11
12 void
13 proce s s (r e a l at)
14 {
15 // sum up (and remove) a l l s t imu l i we i gh t s <= at
16 r e a l weight = stimuli_sum (at) ;
17
18 // time s ince end o f l a s t a b s o l u t e r e f r a c t o r y per iod
19 r e a l d e l t a = at − l a s t_f i r e_t ime − abs_refr_durat ion ;
20
21 // Return i f s t i l l in a b s o l u t e r e f r a c t o r y per iod
22 i f (d e l t a < 0 . 0)
23 return ;
24
25 // Ca l cu l a t e new membrane p o t e n t i a l
26 r e a l decay = exp(−(at − last_spike_time) / tau_m) ;
27 mem_pot = weight + mem_pot ∗ decay ;
28
29 // Update l a s t s p i k e time
30 last_spike_time = at ;
31
32 // Ca l cu l a t e dynamic t h r e s h o l d
33 r e a l th r e sho ld = const_thresho ld +
34 ref_weight ∗ exp(−de l t a / tau_ref) ;
35
36 // Fire i f p o t e n t i a l exceeds t h r e s h o l d
37 i f (mem_pot >= thre sho ld)
38 {
39 mem_pot = 0 . 0 ;
40 la s t_f i r e_t ime = at ;
41 st imulate_synapses (at , I n f i n i t y) ;
42 }
43 }

Figure 2.10: Implementation of Neuron_SRM01

32

2.5 Models

2.5.2 Neuron_SRM02

Class Neuron_SRM02 is based on the Spike Response Model (SRM) using a dynamic
reset to model refractoriness and corresponds to the SpecialEKernel model of Inspire.
The core of the implementation is given in Figure 2.11 on page 35 and is further
described below.

Behaviour

The behaviour comes very close to that of model Neuron_SRM01 as described in 2.5.1,
with the following differences:

• All incoming stimuli are stored in the local priority queue regardless whether in
absolute refractory period or not.

• Refractoriness after firing is modeled using a dynamic reset potential instead of
a dynamic threshold.

• Mebrane potential is calculated regardless whether in absolute refractory period
or not.

The listing in Figure 2.11 on page 35 doesn’t show method stimulate. This is because
the default implementation inherited from class Neuron_Base is used, which is just
stimuli_add(at, weight), i.e. stimuli are stored regardless of absolute refractory
period.

In method process the membrane potential is calculated in the same way as for
Neuron_SRM01 specified in equations (2.1) and (2.2), with the exception that it is
calculated regardless of the absolute refractory period. After the new membrane po-
tential is calculated and the last spike time is updated, we test whether we are currently
in an absolute refractory period or not (lines 17-18). Notice the position of this piece
of code vs. the position in the implementation of Neuron_SRM01. If not in abso-
lute refractory period, we then continue with calculating the dynamic reset (line 21)
according to equation (2.5).

dynamicReset = reset ∗ exp(
−(tat − tlastF ireT ime − tabsRefrDuration)

tauref
) (2.5)

Only if the membrane potential exceeds the constant threshold plus dynamic reset,
the neuron fires. The actions taken when the neuron fires are somewhat more complex
than those of a Neuron_SRM01. At first, we distinguish a spontaneous firing (a firing
with an infinite weight) by testing the membrane potential for infinity (line 26), in
which case we reset the membrane potential to zero and reset to -u_reset (lines 29-30).
Otherwise we just add u_reset on top of dynamic reset and store it back to instance
variable reset (line 34). Finally, we reschedule the entity for the end of its absolute
refractory period (lines 38-40) and stimulate its post-synapses (line 43).

33

2 Architecture and Implementation

Parameters

The parameters of a Neuron_SRM02 are given in Table 2.2.

Parameter Description Default value
abs_refr_duration Duration of absolute refractory period 0.0
last_spike_time Last spike time -Infinity (never)
last_fire_time Last firing time -Infinity (never)
hebb Hebsch behaviour false
tau_m Membrane time constant 0.0
tau_ref Reset time constant 0.0
reset Reset potential 0.0
u_reset Reset offset 0.0
mem_pot Membrane potential 0.0
const_threshold Constant threshold 0.0

Table 2.2: Parameters of Neuron_SRM02

34

2.5 Models

1 void proce s s (r e a l at)
2 {
3 // sum up (and remove) a l l s t imu l i we i gh t s <= at
4 r e a l weight = stimuli_sum (at) ;
5
6 // time s ince end o f l a s t a b s o l u t e r e f r a c t o r y per iod
7 r e a l d e l t a = at − l a s t_f i r e_t ime − abs_refr_durat ion ;
8
9 // Ca l cu l a t e new membrane p o t e n t i a l

10 r e a l decay = exp(−(at − last_spike_time) / tau_m) ;
11 mem_pot = weight + mem_pot ∗ decay ;
12
13 // Update l a s t s p i k e time
14 last_spike_time = at ;
15
16 // Return i f s t i l l in a b s o l u t e r e f r a c t o r y per iod
17 i f (d e l t a < 0 . 0)
18 return ;
19
20 // Ca l cu l a t e dynamic r e s e t
21 r e a l dynamic_reset = r e s e t ∗ exp(−de l t a / tau_ref) ;
22
23 // Fire i f p o t e n t i a l exceeds t h r e s h o l d
24 i f (mem_pot >= const_thresho ld + dynamic_reset)
25 {
26 i f (i s i n f (mem_pot))
27 {
28 // spontaneous f i r i n g (mem_pot == I n f i n i t y)
29 mem_pot = 0 ;
30 r e s e t = −u_reset ;
31 }
32 else
33 {
34 r e s e t = dynamic_reset + u_reset ;
35 }
36
37 // Schedu le e n t i t y f o r end o f a b s o l u t e r e f r a c t o r y per iod
38 i f (abs_refr_durat ion > 0 .0 &&
39 at + abs_refr_durat ion < schedule_at)
40 schedu le (at + abs_refr_durat ion) ;
41
42 la s t_f i r e_t ime = at ;
43 st imulate_synapses (at , I n f i n i t y) ;
44 }
45 }

Figure 2.11: Implementation of Neuron_SRM02 35

2 Architecture and Implementation

2.5.3 Neuron_LIF01

Class Neuron_LIF01 is based on the Leaky Integrate and Fire (LIF) model and corre-
sponds to the ECurLIF model of Inspire. It uses process-oriented simulation (stepped
scheduling) to approximate the course of the membrane potential according to the
input current.

Behaviour

The implementation for method process is given in Figure 2.12. Each incoming stimulus
will increase or decrease (depending on the sign of the stimulus) the input_current (line
7). Then, stepped scheduling is enabled for this neuron to approximate the further
course of the membrane potential (line 10).

Once stepped scheduling has been activated, method process_stepped (see Figure
2.13 on page 38) is called by the scheduler for each time step. Here we calculate the new
membrane potential using Runge-Kutta to solve the integral. If the membrane potential
exceed the constant threshold, the neuron fires. Stepped scheduling is deactivated if
both the membrane potential and the input current fall below mem_pot_bound and
input_current_bound respectively, until the next stimulus reactivates again stepped
scheduling.

Parameters

The parameters of a Neuron_LIF01 are given in Table 2.3.

Parameter Description Default value
abs_refr_duration Duration of absolute refractory period 0.0
last_fire_time Last firing time -Infinity (never)
hebb Hebsch behaviour false
tau_m 0.0
tau_s 0.0
resistor 0.0
current_max 0.0
mem_pot Membrane potential 0.0
mem_pot_bound Membrane potential bound 0.0
input_current Input current 0.0
input_current_bound Input current bound 0.0
const_threshold Constant threshold 0.0

Table 2.3: Parameters of Neuron_LIF01

36

2.5 Models

1 void proce s s (r e a l at)
2 {
3 // Sum up (and remove) a l l s t imu l i we i gh t s <= at
4 r e a l weight = stimuli_sum (at) ;
5
6 // Increase inpu t curren t
7 input_current += weight ∗ current_max / tau_s ;
8
9 // Request s t epped s chedu l i n g

10 schedule_enable_stepping () ;
11 }

Figure 2.12: Implementation of Neuron_LIF01 (method process)

37

2 Architecture and Implementation

1 void process_stepped (r e a l at , r e a l s tep)
2 {
3 r e a l cur r ent [3] ; // incoming curren t a t t , t+h/2 , t+h
4 r e a l f a c t o r = exp(− s tep / (2∗ tau_s)) ;
5 cur r ent [0] = input_current ;
6 input_current ∗= fa c t o r ;
7 cur r ent [1] = input_current ;
8 input_current ∗= fa c t o r ;
9 cur r ent [2] = input_current ;

10
11 i f (at >= las t_f i r e_t ime + abs_refr_durat ion)
12 {
13 // Ca l cu l a t e new membrane po t en t i a l ,
14 // i n t e g r a t e wi th Runge−Kutta
15 r e a l k [4] ;
16 k [0] = step ∗ f (cur r ent [0] , mem_pot) ;
17 k [1] = step ∗ f (cur r ent [1] , mem_pot + k [0] / 2) ;
18 k [2] = step ∗ f (cur r ent [1] , mem_pot + k [1] / 2) ;
19 k [3] = step ∗ f (cur r ent [2] , mem_pot + k [2]) ;
20 mem_pot += 1 . 0/6 . 0 ∗
21 (k [0] + 2 ∗ k [1] + 2 ∗ k [2] + k [3]) ; // + O(s t ep ^5) error
22 }
23 else
24 {
25 mem_pot = 0 . 0 ;
26 }
27
28 i f (mem_pot >= const_thresho ld)
29 {
30 // Fire
31 mem_pot = 0 . 0 ;
32 la s t_f i r e_t ime = at ;
33 st imulate_synapses (at , I n f i n i t y) ;
34 }
35 else i f (mem_pot < mem_pot_bound &&
36 cur rent [0] < input_current_bound)
37 {
38 schedule_disab le_stepping () ;
39 }
40 }
41
42 in l ine r e a l f (r e a l current , r e a l u)
43 {
44 return ((−1.0 / tau_m ∗ u) + (r e s i s t o r / tau_m ∗ cur rent)) ;
45 }

Figure 2.13: Implementation of Neuron_LIF01 (method process_stepped)38

2.5 Models

2.5.4 Neuron_Input

To model an input neuron, there is class Neuron_Input. You don’t need to use input
neurons, as you can stimulate any neuron from an external source, not just input
neurons. The difference is that an input neuron doesn’t have any parameters (except
hebb) and will always forward the stimuli it receives from it’s pre-synapses to it’s post-
synapses, each at its appropriate time. For example if it receives three stimuli for times
1.0, 2.0 and 3.0, it will schedule itself for 1.0, 2.0, 3.0 and each time it gets scheduled it
will forward the corresponding stimulus to it’s post-synapses. As such an input neuron
basically acts as a timed queue.

One interesting application of an input neuron is to act as a guard for neuron models
that do not like infinite values of stimulation efficacy. Putting an input neuron in front
of such a special neuron model either prevents misbehaviour or else reduces the special
cases required for this special neuron model to be implemented. Neuron_LIF01 for
example is such a model that shows invalid behaviour in case it receives infinite stimuli
(spontaneous fire requests).

The actual implementation is given in Figure 2.14. Method stimulate enqueues the
received stimulus into the local priority queue (line 4), whereas method process iterates
over each stimulus in the local priority queue (stimuli_pq) that occurs not later than
at (line 10), removes it from the queue and stimulates all post-synapses (line 15).
Afterwards it reschedules itself if neccessary according to the new top element of the
local priority queue (lines 19-20).

39

2 Architecture and Implementation

1 void
2 s t imu la t e (r e a l at , r e a l weight)
3 {
4 stimuli_add (at , weight) ;
5 }
6
7 void
8 proce s s (r e a l at)
9 {

10 while (! st imuli_pq . empty () && stimuli_pq . top () . at <= at)
11 {
12 Stimulus s = stimuli_pq . top () ;
13 stimuli_pq . pop () ;
14
15 st imulate_synapses (s . at , s . weight) ;
16 }
17
18 // r e s chedu l e
19 i f (! st imuli_pq . empty ())
20 schedu le (st imuli_pq . top () . at) ;
21 }

Figure 2.14: Implementation of Neuron_Input

40

2.5 Models

2.5.5 Neuron_Output

Class Neuron_Output is used to model output neurons. Similar to input neurons, an
output neuron does not have any parameters and nothing prevents you from using
any other neuron type for the purpose of recording fire times. The difference is that
an output neuron will always record a fire for every stimuli it receives, so there is no
calculation involved whether the neuron fires or not. The behaviour is mostly the same
as that of an input neuron (see 2.5.4) with the exception that instead of forwarding the
stimuli to the post-synapses it will just record the fire time (lines 15-16).

1 void
2 s t imu la t e (r e a l at , r e a l weight)
3 {
4 stimuli_add (at , weight) ;
5 }
6
7 void
8 proce s s (r e a l at)
9 {

10 while (! st imuli_pq . empty () && stimuli_pq . top () . at <= at)
11 {
12 Stimulus s = stimuli_pq . top () ;
13 stimuli_pq . pop () ;
14
15 i f (r e co rde r)
16 recorder−>reco rd_f i r e (this , s . at , s . weight) ;
17 }
18
19 // r e s chedu l e
20 i f (! st imuli_pq . empty ())
21 schedu le (st imuli_pq . top () . at) ;
22 }

Figure 2.15: Implementation of Neuron_Output

41

2 Architecture and Implementation

2.5.6 Synapse_Default

This is the most basic type of a synapse. It delays stimuli by delay and changes the
forwarded stimulation efficacy to weight.

Behaviour

The core implementation of class Synapse_Default is given in Figure 2.16. Note that
there is no implementation for method process as Synapse_Default neither makes use
of scheduling nor of the local priority queue. Method stimulate simply forwards ev-
ery incoming stimulus to its post neuron, given that it’s not the post neuron itself
that stimulates the synapse. The latter is required to prevent infinite cycles when
using hebbsch behaviour, where stimuli are sent in both directions. The stimuli a
Synapse_Default forwards is delayed for delay and is send with an efficacy of weight
(the weight parameter of the synapse, not the method argument!).

Parameters

The parameters of a Synapse_Default are given in Table 2.4.

Parameter Description Default value
weight Propagation efficacy 0.0
delay Propagation delay 0.0

Table 2.4: Parameters of Synapse_Default

1 void
2 s t imu la t e (r e a l at , r e a l weight , NeuralEnt ity ∗ source)
3 {
4 i f (source != post_neuron)
5 {
6 post_neuron−>st imu la t e (at + delay , this−>weight) ;
7 }
8 }

Figure 2.16: Implementation of Synapse_Default

42

2.5 Models

2.5.7 Synapse_Hebb

Class Synapse_Hebb implements Hebbsch learning. It basically adapts its propagation
efficacy (weight) according to whether forwarded stimuli led to a neuron firing or not.
Note that in order to be useful you have to set the hebb property to true for all
participating neurons; unlike Inspire there is no need for a special hebbsch neuron
model.

Behaviour

The implementation of method stimulate is given in Figure 2.17. A Synapse_Hebb
operates in two directions, the normal forward direction and the reverse direction from
post-neuron to pre-neuron. In the forward direction (lines 6-23) it stores the timestamps
of every incoming stimulus (pre_synaptic_spikes), adapts it’s weight according to a
learning algorithm, and finally forwards the stimulus like any regular synapse would
do (line 23). In the reverse direction (lines 27-37), which results from the post-neuron
signalling it’s pre-synapse a firing, it adapts the weight as well according to a learning
algorithm and finally resets the pre_synaptic_spikes array (line 37).

Parameters

The parameters of a Synapse_Hebb are given in Table 2.5.

Parameter Description Default value
last_fire_time -Infinity (never)
current_fire_time -Infinity (never)
weight Propagation efficacy 0.0
delay Propagation delay 0.0
learning_rate Learning rate 0.0
decrease_rate Decrease rate 0.0

Table 2.5: Parameters of Synapse_Hebb

43

2 Architecture and Implementation

1 void
2 s t imu la t e (r e a l at , r e a l _weight , NeuralEnt ity ∗ source)
3 {
4 i f (source != post_neuron)
5 {
6 pre_synaptic_spikes . push (at) ;
7
8 i f (l a s t_f i r e_t ime > 0 . 0)
9 {

10 r e a l delta_time = las t_f i r e_t ime − at ;
11 r e a l delta_weight = learn ing_rate ∗
12 learning_window (delta_time) ;
13 u int sz = pre_synaptic_spikes . s i z e () ;
14
15 i f (sz > 1)
16 delta_time = pre_synaptic_spikes [sz − 2] − at ;
17
18 delta_weight += decrease_rate ∗ delta_time ;
19 weight += (1 . 0 − f abs (weight)) ∗ delta_weight ;
20 }
21
22 // Forward s t imu lu s
23 post_neuron−>st imu la t e (at+delay , weight , this) ;
24 }
25 else
26 {
27 r e a l delta_weight = 0 . 0 ;
28
29 la s t_f i r e_t ime = current_f i re_t ime ;
30 current_f i re_t ime = at ;
31
32 for (int i =0; i < pre_synaptic_spikes . s i z e () ; i++)
33 delta_weight += learn ing_rate ∗
34 learning_window (at − pre_synaptic_spikes [i]) ;
35
36 weight += (1 . 0 − f abs (weight)) ∗ delta_weight ;
37 pre_synaptic_spikes . c l e a r () ;
38 }
39 }
40
41 in l ine r e a l learning_window (r e a l delta_x , r e a l pos_ramp=1,
42 r e a l neg_ramp=1, r e a l pos_decay=10, r e a l neg_decay=8) {
43 return ((delta_x >= 0) ?
44 (pos_ramp ∗ delta_x ∗ exp(−delta_x/pos_decay)) :
45 (neg_ramp ∗ delta_x ∗ exp (delta_x/neg_decay))) ; }

Figure 2.17: Implementation of Synapse_Hebb44

2.6 Miscellaneous Classes

2.6 Miscellaneous Classes

There are some further classes in Yinspire worth to describe briefly. Please consult the
well-documented source code for more in-depth information.

Recorder Used to record specific events like firing of a NeuralEntity. Every NeuralEn-
tity stores a pointer to a Recorder instance.

NeuralNet A collection of NeuralEntities. Maintains an id to NeuralEntity mapping.

NeuralFactory Eases creation of model instances by type name, after registering the
model class.

Simulator Glues together a NeuralNet, Scheduler, NeuralFactory and a Loader_Yin.
Provides all functionality required to create, load and run simulations.

Loader Base class of all loaders. The purpose of a loader is to construct a neural net
from a file.

Loader_Yin A loader for the Yin file format.

Dumper Base class of all dumpers. The purpose of a dumper is to dump a neural net
back to a file.

Dumper_Yin Dumps a neural-net back to Yin format.

Dumper_Dot Dumps the structure of a net to the dot file format, which is part of
graphviz, an application for laying out graphs.

45

2 Architecture and Implementation

Yin : := (Template | Entity | Connect | St imulate)∗
Template : := "TEMPLATE"? IdL i s t "<" Type Parameters ?
Entity : := "ENTITY"? IdL i s t "=" Type Parameters ?
Connect : := "CONNECT"? IdL i s t ("−>" IdL i s t)+
St imulate : := "STIMULATE"? Id " !" St imu l i
I dL i s t : := Id (" ," Id)∗
Id : := [A−Za−z_] [A−Za−z0−9_]∗
Type : := Id
Parameters : := "{" Parameter∗ "}"
Parameter : := Key "=" Value
Key : := Id
St imu l i : := "{" Stimulus ∗ "}" | St imulus
Stimulus : := Weight "@" Timestamp | Timestamp
Value = Float | Bool
Timestamp : := Float
Weight : := Float
Bool : := " true " | " f a l s e "
Float : := ("+" | "−")? (" I n f i n i t y " | FloatNum)
FloatNum : := D ig i t s (" . " D i g i t s)? (" e" ("+" | "−")? D i g i t s)?
D i g i t s = [0−9] [0−9]∗

Figure 2.18: EBNF of Yin File Format

2.7 The Yin File Format

Yinspire includes a loader (class Loader_Yin) for a human-readable file format called
Yin, that provides an easy to learn yet flexible syntax to define neural nets. One of
its features is to be able to define templates for commonly used neurons or synapses,
which reduces typing a lot. Furthermore, input stimuli can be directly specified within
this file format, making a separate file format superfluous.

The grammar of Yin in EBNF is given in Figure 2.18. Note that whitespaces are
used to separate tokens where neccessary. Comments start with “#” and extend to the
end of line. An example of a concrete Yin file is given in Figure 2.19.

46

2.7 The Yin File Format

TEMPLATE Neuron < Neuron_SRM01 {
abs_refr_durat ion = 0 .0
const_thresho ld = 1 .0
ref_weight = 0.25
tau_m = 1.15
tau_ref = 3 .0

}

Exc i ta tory synapse
TEMPLATE SynEx < Synapse_Default {

de lay = 0 .7
weight = 1 .1

}

Inh i b i t o r y synapse
TEMPLATE SynInh < Synapse_Default {

de lay = 0 .2
weight = −1.0

}

ENTITY n1 , n2 , n3 = Neuron

ENTITY e0 , e1 , e2 = SynEx
ENTITY i0 , i1 , i 2 = SynInh

CONNECT n1 −> e0 −> n2 −> i0 −> n3
CONNECT n1 −> e1 −> n3
. . .

STIMULATE n1 ! 10 .0
STIMULATE n2 ! {

1 .0 2 .0 3 .0 2@4. 0
5 .0

}

Figure 2.19: Example Yin file

47

2 Architecture and Implementation

2.8 Converters

Yinspire includes converters for various file formats:

• Netfile – The format used by Gereon Weiss to describe neural-nets.

• GraphML – Neural-net definitions in GraphML (XML language for graphs).

• SpikeTrains – Simple format used to represent input stimuli.

• Yin – Novel file format introduced with Yinspire.

The Netfile format is very inflexible and hard to read/write for humans. But it is very
fast and easy to parse. GraphML on the other hand is somewhat harder to parse. The
implementation in Inspire is unusable for larger nets as it takes much longer to load a
net than to simulate it. Editors exist to graphically generate nets in GraphML. Both,
Netfile and GraphML formats require a separate format for spikes (SpikeTrains). The
Yin format unifies neural-net definition and spike-definitions into one file format, is
very fast to parse and human-readable.

The tools directory of the Yinspire distribution contains the following converters, all
written in Ruby:

• GraphML_To_Netfile.rb

• GraphML_To_Yin.rb

• Netfile_To_Yin.rb

• SpikeTrains_To_Yin.rb

They all work by reading the to be converted file from standard input and print the
result to standard output.

2.9 Command-Line Interface

The command-line usage of the Yinspire binary yinspire (see Chapter 4) is given in
Figure 2.20. The basic usage is to pass any number of files in Yin format as arguments:

yinspire file1.yin file2.yin

Passing multiple Yin files can become handy as this allows you to modularize tem-
plate declarations and to separate neural-net definitions from input stimuli defintitions.

By default no fire times are recorded unless you specify a file to record the fire times
to, using the --record directive. To record to standard output, specify “-”. To stop a
simulation at a specific time, use the --stop-at option.

48

2.9 Command-Line Interface

Usage: yinspire [options] file [file ...]
--stop -at N Stop simulator at N (default: Infinity)
--record FILE Record fires to this file
--dump FILE Dump net after simulation
--dump -dot FILE Dump net after simulation in dot format
--version Show version
--help Show this message

Figure 2.20: Command-Line Usage of yinspire

Figure 2.21: Graphical Representation of a Neural-Net using Graphviz/dot

The --dump option enables you to dump the whole neural-net after the simulation
has ended to a file (in Yin format). Note that the dump does no longer contain any
template definitions. For the purpose of visualization, the structure of the net can be
dumped to the dot format of Graphviz7 using the --dump-dot option. This can be
used as follows, producing a graph as shown in Figure 2.21.

yinspire --stop -at -Infinity --dump -dot - skorpion.yin |
dot -Tpng | display

7Graphviz http://www.graphviz.org/

49

http://www.graphviz.org/

3 Extending Yinspire

This chapter explains how to embed Yinspire into your application and how to extend
Yinspire for new models of neurons or synapses.

3.1 Embedding Yinspire

At first, lets see how to embed Yinspire to use in your own C++ application. A basic
example is given in Figure 3.1. The Simulator.h header file contains class Simulator
and includes all necessary files. Class Simulator glues together a bunch of other classes
(NeuralFactory, NeuralNet, Scheduler) and provides an easy-to-use interface for com-
monly used functionality. If you need the ultimate flexibility and functionality, you can
still switch back using the underlying classes directly.

We then define our own recorder class MyRecorder (lines 5-14), which we use for
entity “neuron1” (line 29). Method record_fire should be overwritten to provide custom
behaviour. Any further details are described in the comments of the example.

3.1.1 Compilation

The next step is to compile your application. This requires that you have already
compiled Yinspire as explained in Chapter 4. You now have two options: Either add
your application to the CMakeLists.txt build script used by Yinspire, in the same way
as is done for the command-line interface of Yinspire, or alternatively write your own
Makefile. The latter is described in Figure 3.2 on page 53. The crux of the Makefile
is to specify the include and library paths correctly, and to link against the yinspirelib
library.

51

3 Extending Yinspire

1 #include " Simulator . h"
2 using namespace Yinsp i r e ;
3 using namespace std ;
4
5 class MyRecorder : public Recorder
6 {
7 public :
8
9 virtual void

10 r e co rd_f i r e (NeuralEnt ity ∗ o r i g i n , r e a l at , r e a l weight)
11 {
12 // Do whatever you want here
13 }
14 } ;
15
16 int main (int argc , char ∗∗ argv)
17 {
18 MyRecorder r e co rde r ;
19 Simulator sim ;
20
21 // No record ing by d e f a u l t
22 sim . se t_de fau l t_recorder (NULL) ;
23
24 // Load ne t s
25 sim . load_yin ("net . y in ") ;
26 sim . load_yin (" sp i k e s . y in ") ;
27
28 // Set recorder f o r e n t i t y "neuron1"
29 sim . get_ent i ty ("neuron1")−>set_recorder (& re co rde r) ;
30
31 // St imu la t e e n t i t y "neuron1"
32 sim . get_ent i ty ("neuron1")−>st imu la t e (1 0 . 0 , I n f i n i t y , NULL) ;
33
34 // Run s imu la t i on
35 sim . run (1 0 0 . 0) ;
36
37 // Dump net
38 sim . dump_yin("out . y in ") ;
39 }

Figure 3.1: Embedding Yinspire in your Application (App.cc)

52

3.1 Embedding Yinspire

CHANGE THIS !
YINSPIRE_ROOT=

INCLUDE_PATH=${YINSPIRE_ROOT}/ s r c
LIBRARY_PATH=${YINSPIRE_ROOT}/ bu i ld / Release

App : App . cc
${CXX} −I$ {INCLUDE_PATH} −L${LIBRARY_PATH} \

− l y i n s p i r e l i b App . cc −o App

Figure 3.2: Makefile to compile App.cc

53

3 Extending Yinspire

3.2 Implementing a new Model

Each model in Yinspire is implemented in a separate header file and resides within
directory src/Models. Using header files is a lot easier because it reduces code redun-
dancy, increases readability and doesn’t require to modify the Makefile in case a new
model is added, as it is explicitly included into another C++ file.

A template for a neuron model is given in Figure 3.3. This is a good start for your
own model, all you have to do is to just replace every occurence of the word “Template”
with the classifying name of your own model, e.g. SRM03 or LIF02.

Lines 1-2 are required to prevent inclusion of this header file more than once. Make
sure that you don’t forget to modify those two lines according to the name of your
model. Line 4 includes the class definition of our models’ base class Neuron_Base.
Note that all include paths are relative to the src directory of Yinspire.

The DECLARE_ENTITY macro in line 10 defines three methods (create, ctype and type),
required to register the neuron model in a NeuralFactory and to allow the NeuralFactory
to create an instance of your model.

Line 14 defines a property my_property for our model class. Here you would define
all the properties that are required by your model. In the constructor in line 18, those
properties get assigned a default value. Make sure to initialize any property in the
default constructor and that you do not use any non-default constructors.

Loading and dumping of internal state is implemented in methods load and dump.
Both call the superclass’ method and then use macro PROP_LOAD (PROP_DUMP) to load
(dump) values from (to) the Properties p. The macro is a shortcut for actually doing
p.load(my_property, “my_property”), so by using this macro, the string is derived from
the name of the property. If the externally visible name of the property, i.e. the name
used in Yin files, should be different than the name of the instance variable, use the
p.load method directly with the desired external name passed as second argument.

The actual neural-net related behaviour has to be implemented in the methods stim-
ulate and process (and process_stepped) which are left empty in the template. An
in-depth explanation about those issues are contained in Chapter 2.

Once your model is complete, the next step is to register the model with a Neural-
Factory ; class Simulator contains a NeuralFactory which can be accessed by calling
method get_factory. For models shipped with Yinspire, this is performed in method
RegisterTypes in file src/RegisterTypes.h. Registering a model is as simple as:

f a c t o r y . r eg i s t e r_type ("Neuron_Template" ,
Neuron_Template : : c r e a t e) ;

// or
REGISTER_TYPE(fac to ry , Neuron_Template) ;

The first argument to method register_type is the externally visible name for our
model used in Yin files. It should equal the class name, in which case the REGISTER_TYPE
macro should be favored.

54

3.2 Implementing a new Model

1 #ifndef __YINSPIRE__NEURON_TEMPLATE__
2 #define __YINSPIRE__NEURON_TEMPLATE__
3
4 #include "Models/Neuron_Base . h"
5
6 namespace Yinsp i r e {
7
8 class Neuron_Template : public Neuron_Base
9 {

10 DECLARE_ENTITY(Neuron_Template) ;
11
12 protected :
13
14 r e a l my_property ;
15
16 public :
17
18 Neuron_Template () : my_property (0 . 0) {}
19
20 virtual void
21 load (Prope r t i e s &p)
22 {
23 Neuron_Base : : load (p) ;
24 PROP_LOAD(p , my_property) ;
25 }
26
27 virtual void
28 dump(Prope r t i e s &p)
29 {
30 Neuron_Base : : dump(p) ;
31 PROP_DUMP(p , my_property) ;
32 }
33
34 virtual void
35 s t imu la t e (r e a l at , r e a l weight , NeuralEnt ity ∗ source)
36 {
37 }
38
39 virtual void
40 proce s s (r e a l at) {}
41 } ;
42 } /∗ namespace Yinsp ire ∗/
43
44 #endif

Figure 3.3: Template for a Neuron model
55

3 Extending Yinspire

// . . .

#include "Models/Neuron_Template . h"

int main (int argc , char ∗∗ argv)
{

MyRecorder r e co rde r ;
S imulator sim ;

REGISTER_TYPE(sim . get_factory () , Neuron_Template) ;

// . . .
}

Figure 3.4: Changes to App.cc to use our new model Neuron_Template.

The necessary pieces of code required to use our new model Neuron_Template in
the application we developed in Section 3.1 are shown in Figure 3.4.

56

4 Installation

To compile Yinspire you need a C++ compiler and the cross-platform make tool
CMake1. The latter was used to ease compilation especially on Windows systems.

4.0.1 Unix

To compile Yinspire on an unixoid system (Linux, *BSD, Solaris, MacOS X), issue the
following instructions:

Change in t o the roo t d i r e c t o r y o f Yinsp ire
cd y i n s p i r e

Create b u i l d d i r e c t o r y
mkdir −p bu i ld / Release

Create make f i l e s
cd bu i ld / Release
cmake . . / . .

And compi le
make

This will create the binary build/Release/yinspire unless compilation fails. To
compile a binary for the purpose of debugging, set the value of CMAKE_BUILD_TYPE
to Debug when calling cmake. Or if you prefer to use double precision floats, set YIN-
SPIRE_DOUBLE_PRECISION to ON. Both is shown in the example below:

cmake −DYINSPIRE_DOUBLE_PRECISION=ON \
−DCMAKE_BUILD_TYPE=Debug . . / . .

4.0.2 Windows

On Windows, it is recommended to use the Microsoft Visual C++ Express Edition2

compiler, even though compilation with MinGW should work3 as well.
1CMake http://www.cmake.org/
2Only tested with version 8.0 (2005) and 9.0
3I’ve seen strange behaviour when compiled with MinGW and -O3 optimization.

57

http://www.cmake.org/

4 Installation

Figure 4.1: CMake on Windows

Start CMake and specify the paths to the source code and the build directory as
shown in Figure 4.1, then press the Configure button. Next you have to choose the
generator (Figure 4.2). Choose a generator for the compiler you want to use. This
brings us to the dialog where you can set some compile options (Figure 4.3). For
example to compile with double precision floats YINSPIRE_DOUBLE_PRECISION
should be set to ON. Once done, press Configure again. Finally, click the Ok button.
This creates the makefiles necessary to build the project and exits CMake.

Now change into the build directory and double click on YINSPIRE.sln, assuming
you’re using Visual C++ Express Edition as compiler. Once the IDE has opened up,
choose the configuration (Release or Debug build) and press F7 to build the project
(Figure 4.4). Depending on the configuration you’ve choosen, you’ll find the binary
in subdirectory Release or Debug. You can then start the binary from the command
prompt as shown in Figure 4.5.

4.0.3 Cross-Compilation

It is also possible to cross-compile Yinspire for the Windows platform on an unixoid sys-
tem. To do so, you need to install the MinGW cross-compiler for your operating system.
Then, when configuring with CMake, set YINSPIRE_CROSSCOMPILE_MINGW to
ON. To test the binary, you can use the Windows Emulator Wine4.

4Wine http://www.winehq.org/

58

http://www.winehq.org/

Figure 4.2: CMake - Choose the generator

Figure 4.3: CMake - Set compile options

59

4 Installation

Figure 4.4: Building Yinspire with Visual C++ Express Edition

Figure 4.5: Running Yinspire from the Command Prompt

60

5 Interfaces to Foreign Languages

5.1 Ruby Interface

5.1.1 Installation

Only installation on Unixoid systems is described. Follow the steps in Chapter 4
to compile Yinspire. Then, assuming you have Ruby installed, issue the following
commands to compile and install ruby-yinspire:

Change in t o the d i r e c t o r y o f the Ruby i n t e r f a c e
cd y i n s p i r e / ext /ruby−y i n s p i r e

As root user , compi le and i n s t a l l ruby−y i n s p i r e
su ruby setup . rb

5.1.2 Usage

The example in Figure 5.1 shows the basic usage of ruby-yinspire. All it does is to load
two Yin files and then start the simulation.

A more complex example is given in Figure 5.2, demonstrating the usage of a custom
Recorder as well as programmatically generating neural nets.

r e qu i r e ’ y i n s p i r e ’

Y insp i r e : : S imulator . new do | sim |
sim . load_yin (’ net . y in ’)
sim . load_yin (’ another_net . y in ’)

sim . run
end

Figure 5.1: Running a simulation with ruby-yinspire.

61

5 Interfaces to Foreign Languages

r e qu i r e ’ y i n s p i r e ’ ; i n c l ude Yinsp i r e

class MyRecorder < Recorder
def r e c o rd_f i r e (o r i g i n , at , weight)

puts "#{ weight } ! #{ at }"
end

end

Simulator . new do | sim |
Required to avoid the recorder in s tance from be ing
garbage c o l l e c t e d .
myrec = sim . r e g i s t e r_r e c o rd e r (MyRecorder . new)

Set d e f a u l t recorder
sim . de fau l t_reco rde r = myrec

Create e n t i t i e s
n1 = sim . c r ea te_ent i ty ’Neuron_SRM01 ’ , ’ n1 ’
s1 = sim . c r ea te_ent i ty ’ Synapse_Default ’ , ’ s1 ’

Connect them to a c y c l e
n1 . connect (s1)
s1 . connect (n1)

Set i n t e r n a l s t a t e
n1 . load : abs_refr_durat ion => 0 .1 , : tau_m => 1 ,

: re f_weight => −0.05 , : hebb => fa l se
s1 . load : weight => 0 .06 , : de lay => 0.5

I t e r a t e over each e n t i t y in the net p r i n t i n g i t ’ s i d
sim . each_entity { | e | p e . id }

Access e n t i t y by id
n1 . id == sim [’ n1 ’] . id

St imu la t e n1
n1 . s t imu la t e (0 . 0 , I n f i n i t y)

Run simula t ion , s t opp ing every 1000.0 t i c k s .
while sim . run_for (1000 . 0)

p sim . current_time
end

end

Figure 5.2: Advanced example using ruby-yinspire.

62

5.1 Ruby Interface

5.1.3 Reference

The notation used below is the following: Class.class_method and Class#method. All
classes are contained in the Yinspire namespace.

Simulator.new Creates new simulator instance.

Simulator.new{|sim|...} Creates new simulator instance and pass it to the block. At
the end of the block, method destroy is automatically called.

Simulator#destroy Destroys simulator instance.

Simulator#load_yin(filename) Loads a Yin file from filename.

Simulator#dump_yin(filename) Dumps the net in Yin format to filename.

Simulator#current_time Returns the current simulation time.

Simulator#run(stop_at=Infinity) Runs the simulation until stop_at. Returns true
if simulation hasn’t yet reached the end (i.e. the priority queue is not yet empty).
Otherwise false.

Simulator#run_for(ticks) Runs the simulation for ticks time steps (in simulator time).
Returns true if simulation hasn’t yet reached the end (i.e. the priority queue is
not yet empty). Otherwise false.

Simulator#each_entity{|entity|...} Iterates over each entity in the net.

Simulator#get_entity(id) Returns a reference to the NeuralEntity named id in the
net.

Simulator#[id] Alias for method Simulator#get_entity.

Simulator#create_entity(type,id) Creates a new entity instance of type and with id,
and attaches it to the net.

Simulator#default_recorder= Sets the default recorder, which is used by every newly
created NeuralEntity instance from now on.

Simulator#register_recorder(recorder) Instances of Recorder must be registered be-
fore being assigned to an NeuralEntity or used as default recorder. This is re-
quired to prevent them from being garbage collected, which could otherwise lead
to dangling pointers.

Recorder.new Creates new recorder instance. Subclass, as the default behaviour is to
do nothing!

Recorder#record_fire(origin,at,weight) Is called when NeuralEntity origin fires. Over-
write!

NeuralEntity#id Returns the NeuralEntity’s id.

63

5 Interfaces to Foreign Languages

NeuralEntity#type Returns the NeuralEntity’s model type.

NeuralEntity#dump Returns the internal state of the NeuralEntity as a Hash.

NeuralEntity#load(hash) Loads the internal state from hash.

NeuralEntity#connect(target) Connects itself to the NeuralEntity target.

NeuralEntity#disconnect(target) Disconnects itself from the NeuralEntity target.

NeuralEntity#stimulate(at,weight,source) Stimulates the NeuralEntity with the given
parameters.

NeuralEntity#recorder Returns the used Recorder instance or nil if none such exists.

NeuralEntity#recorder= Assigns the Recorder instance to use for the particular entity
(nil means “no recorder”).

NeuralEntity#inspect Nicely outputs a NeuralEntity.

5.2 Octave/Matlab Interface

5.2.1 Installation

Only installation on Unixoid systems with Octave is described. Follow the steps in
Chapter 4 to compile Yinspire. Then, assuming you have Octave installed, issue the
following commands to compile mex-yinspire:

Change in t o the d i r e c t o r y o f Octave/Matlab/Mex i n t e r f a c e
cd y i n s p i r e / ext /mex−y i n s p i r e

Compile Yinsp ire .mex
make compi le

Copy mex f i l e to the o ther Matlab sources in d i r e c t o r y m
cp Yinsp i r e .mex m/

Once this has been accomplished, test whether it actually works by running Octave
with a load path set to “m” as shown below:

cd y i n s p i r e / ex t /mex−y i n s p i r e
octave −p m
octave −3.0.0:1 > Simulator_new
lhs_1 = 705960352
ans = 705960352
octave −3.0.0:2 >

64

5.2 Octave/Matlab Interface

sim = Simulator_new
Simulator_load_yin (sim , "net . y in ")
Simulator_load_yin (sim , "another_net . y in ")
Simulator_run (sim , 1000 .0)
Simulator_destroy (sim)

Figure 5.3: Running a simulation with mex-yinspire.

5.2.2 Usage

The example in Figure 5.3 shows the basic usage of mex-yinspire. All it does is to load
two Yin files and then running the simulation stopping at time 1000.0.

A more complex example is given in Figure 5.4, demonstrating how to programmat-
ically generate neural nets.

5.2.3 Reference

Note that every function name is available both with and without a “Yinspire_” prefix.

Simulator_new() Creates new simulator instance.

Simulator_destroy(sim) Destroys simulator instance sim.

Simulator_load_yin(sim,filename) Loads a Yin file from filename.

Simulator_dump_yin(sim,filename) Dumps the net in Yin format to filename.

Simulator_run(sim,stop_at) Runs the simulation until stop_at. Returns the current
simulation time (after the simulation).

Simulator_num_entities(sim) Returns the number of entities in the net.

Simulator_entity_ids(sim) Returns an array of all entity ids in the net.

Simulator_get_entity(sim,id) Returns a reference to the NeuralEntity named id in
the net.

Simulator_create_entity(sim,type,id) Creates a new entity instance of type and with
id, and attaches it to the net.

Simulator_set_default_recorder(sim,rec) Set the default recorder, which is used by
every newly created NeuralEntity instance from now on.

Recorder_new Creates new recorder instance.

Recorder_destroy(rec) Destroys recorder instance rec.

Recorder_clear(rec) Clear all recorded fire times.

65

5 Interfaces to Foreign Languages

sim = Simulator_new

Create recorder
r e c = Recorder_new

Set d e f a u l t recorder
Simulator_set_default_recorder (sim , r ec)

Create e n t i t i e s
n1 = Simulator_create_ent i ty (sim , ’Neuron_SRM01 ’ , ’ n1 ’)
s1 = Simulator_create_ent i ty (sim , ’ Synapse_Default ’ , ’ s1 ’)

Connect them
NeuralEntity_connect (n1 , s1)
NeuralEntity_connect (s1 , n1)

Set i n t e r n a l s t a t e
x = {}
x . abs_refr_durat ion = 0 .1
x . const_thresho ld = 0
x . ref_weight = −0.05
x . tau_m = 1
x . hebb = f a l s e
y = {}
y . weight = 0.06
y . de lay = 0 .5
NeuralEntity_load (n1 , x)
NeuralEntity_load (s1 , y)

St imu la t e n1
NeuralEnt i ty_st imulate (n1 , 0 . 0 , Inf , 0)

Run s imu la t i on
Simulator_run (sim , 1000 .0)

Get f i r e t im e s [(en t i t y , at , we igh t)]
f i r e t im e s = Recorder_get_data (r ec)

Clear f i r e t im e s
Recorder_clear (r e c)

Recorder_destroy (r ec)
Simulator_destroy (sim)

Figure 5.4: Advanced example using mex-yinspire.

66

5.2 Octave/Matlab Interface

Recorder_get_data(rec) Return a cell array containing (entity, at, weight) tuples of
all firetimes up to now.

NeuralEntity_id(ent) Returns the NeuralEntity’s id.

NeuralEntity_type(ent) Returns the NeuralEntity’s model type.

NeuralEntity_dump(ent) Returns the internal state of the NeuralEntity as a struc-
tured array.

NeuralEntity_load(ent,state) Loads the internal state from the structured array state.

NeuralEntity_connect(ent,target) Connects itself to the NeuralEntity target.

NeuralEntity_disconnect(ent,target) Disconnects itself from the NeuralEntity target.

NeuralEntity_stimulate(ent,at,weight,source) Stimulates the NeuralEntity with the
given parameters.

NeuralEntity_set_recorder(ent,rec) Assign the Recorder instance to use for the par-
ticular entity.

67

6 Prototypes

6.1 Yinspire in Cplus2Ruby

During the process of implementing Yinspire in pure C++ I also made an attempt at
creating a distinct version using a combination of Ruby and C++. The advantages of
this version compared to the pure C++ version are manifold:

• No need to separate header (.h) and implementation files (.cc) as in C++. This
improves readability and maintainability.

• No memory leaks due to (tracing) garbage-collection.

• Code that is not performance-critical can be written in Ruby, which is a lot more
expressive and productive and less error-prone.

• Powerful scripting built-in. No need for arcane Matlab or Octave scripts.

• No need to manually write any wrapper code to interface a scripting language.

• Native C++ speed (for the parts written in C++).

• Meta-programming and code generation reduces code size further.

6.1.1 How it works

The by-product of this prototype is a library called Cplus2Ruby1, which provides fea-
tures to mix Ruby and C++ code in an object-oriented manner. To exemplify, see
the example in Figure 6.1, which declares, in pure Ruby, a class NeuralEntity with a
property id of type Object (any Ruby value can be assigned to it), and a subclass
Neuron with a property potential of the C-type float and a method stimulate. The
body of method stimulate (everything between %{ and }) is pure C++ code. Note
that Cplus2Ruby “abuses” Ruby as a Domain Specific Language (DSL), which is where
Ruby really shines due to it’s syntactical diversity. Even though the method body con-
tains C++ code, the whole listing is 100% pure Ruby code. This is achived by using
Ruby’s String syntax %{this is a string} for the method body, and Hashes for the
method signature.

At the time when line 14 (Cplus2Ruby.commit) is executed, Cplus2Ruby introspects
the two classes and automatically generates the corresponding C++ code as well as
code required to call the C++ methods directly from Ruby, which involves generating
wrapper code that converts the arguments from C++ to Ruby types and vice versa.

1Cplus2Ruby http://rubyforge.org/projects/cplus2ruby/

69

http://rubyforge.org/projects/cplus2ruby/

6 Prototypes

1 class NeuralEnt ity ; cplus2ruby
2 property : id
3 end
4

5 class Neuron < NeuralEnt ity
6 property : po t en t i a l , : f l o a t
7

8 method : s t imulate , { : at => : f l o a t } , { : weight => : f l o a t } , %{
9 po t en t i a l += at ∗ weight ;

10 }
11 end
12

13 # genera te code , compi le and load l i b r a r y
14 Cplus2Ruby . commit (" neura l ")
15

16 # use i t
17 n = Neuron . new
18 n . id = "n1"
19 n . p o t e n t i a l = 1 .0
20 n . s t imu la t e (1 . 0 , 2 . 0)
21 pr i n t n . p o t e n t i a l # => 3.0

Figure 6.1: Cplus2Ruby example code

70

6.1 Yinspire in Cplus2Ruby

1 class NeuralEnt ity : RubyObject {
2 VALUE id ;
3
4 NeuralEnt ity () { id = Qnil ; }
5 } ;
6
7 class Neuron : NeuralEnt ity {
8 f loat po t en t i a l ;
9

10 Neuron () { po t e n t i a l = 0 . 0 ; }
11
12 void s t imu la t e (f loat at , f loat weight) {
13 po t e n t i a l += at ∗ weight ;
14 }
15 } ;

Figure 6.2: Approximate C++ code generated by Cplus2Ruby

It also automatically generates code required during the process of garbage collection.
Once the code has been generated, a C++ compiler is fed with it to produce a shared
library, which then is loaded. After the library has been successfully loaded, the C++
methods are available in Ruby. This all happens automagically in the background,
without any user-interaction.

So what in line 17 happens, when we create a new object of class Neuron using
Neuron.new is that, first of all, an instance of the Ruby class Neuron is created. Af-
terwards, an instance of the corresponding C++ class, the approximate source is given
in Figure 6.2, is allocated and initialized. This C++ object is then attached to the
Ruby object. To fully understand how this all works out one has to understand the
internals of the Ruby interpreter, which is totally out of scope of this thesis. In short,
Cplus2Ruby is a very powerful library to glue Ruby and C++ seamlessly together and
there are a lot more features not described here.

6.1.2 Installation and Usage

This section only covers installation on Unix-like operating systems because Cplus2Ruby
needs to invoke a C++ compiler at runtime which isn’t by default available on Win-
dows. Once you have Ruby2 and RubyGems3 (a package manager for Ruby) installed,
getting Yinspire for Ruby installed is just a matter of typing gem install yinspire
at the command prompt. Note that you might need to be the root user in order to
perform this action. This will in turn download and install Yinspire for Ruby and all
libraries it depends on. A command-line utility called yinspire is installed as well,

2Ruby Homepage http://www.ruby-lang.org/
3RubyGems http://www.rubygems.org/

71

http://www.ruby-lang.org/
http://www.rubygems.org/

6 Prototypes

Usage: yinspire [options]
-s, --stop -at N Stop simulation at N

(default: Infinity)
--tolerance N Stimuli tolerance (default: 0.0)

-l, --load FILE[: FORMAT] Load file
(formats: yin , spike , json , graphml)

-d, --dump FILE[: FORMAT] Dump net to file (after simulation)
(formats: yin , dot)

-o, --output FILE Filename to write output to
(default: stdout)

--record -id x,y,z NeuralEntity ids for which to record
fire events. (default: ALL)

--record -type x,y,z NeuralEntity types for which to record
fire events. (default: ALL)

--do-not -simulate Do not simulate
--force -compilation Force (re -) compilation of Yinspire
--tmp DIR Temporary directory for compilation

(default: /tmp/Yinspire)
-h, --help Show this message

Figure 6.3: Command-Line usage of Yinspire/C++Ruby

which can be used according to Figure 6.3. For example yinspire --load net.yin
--record-id id1 --stop-at 1000 will load the Yin file net.yin, simulate it until the
simulation time reaches 1000, recording fire events for id1 to standard output.

6.1.3 Conclusion

Even though this version has a lot of advantages, garbage collection to mention only
one, it has been superseded by the pure C++ version. The main reason for this decision
was that future students should still be able to extend this project. In the case of a
mixture of Ruby and C++ this is much less guaranteed, especially when depending on
a complex library like Cplus2Ruby, than for a version written in pure C++.

What this experiment has shown is the feasibility to implement a high-performance
simulator for spiking neural nets in a garbage collected and dynamically typed language
like Ruby, without loosing performance, given that the core is implemented in a lower-
level language like C++.

6.2 An Editor for Neural Nets

To get an idea how a graphical user interface (GUI) for a neural net simulator could
look like, a prototype was developed using the Ruby version of Yinspire, as introduced
in Section 6.1. A screeshot is shown in Figure 6.4 below. For the GUI, the open-source,

72

6.2 An Editor for Neural Nets

cross-platform Fox-Toolkit4 was used, which provides very good support for OpenGL
and comes with a ready-to-use editor for three-dimensional objects.

Figure 6.4: Screenshot of prototype Yinspire GUI

4Fox-Toolkit http://www.fox-toolkit.com/

73

http://www.fox-toolkit.com/

7 Performance Benchmark

The primary research objectives for this thesis was to improve the performance of
neural-net simulations relative to the existing simulator Inspire. To provide evidence
that this goal has been successfully met, the underlying chapter describes a performance
benchmark and presents the promising results.

7.1 Benchmark Setup

In the lack of a good, realistic benchmark, whose outcome could moreover serve as an
indication for correct program behaviour, I have choosen the benchmark Gereon Weiss
describes in Chapter 5 of his study thesis [Weiß, 2005].

He uses a total of 1000 neurons, of which 100 are input neurons, 700 are of type 1,
and 200 of type 2. As Gereon neither provides the parameters he uses for the input
neurons nor exactly describes whether input neurons can have incoming synapses or
not, I make the assumption that input neurons have the same parameters as type 1
neurons and that they can have incoming connections. For the neuron model I’ve
choosen Neuron_SRM01, which corresponds to Neuron_KernelBasedLIF in Inspire.

The parameters for all three types of neurons are given in Table 7.2. The synapse
parameters – a function of the pre- and post-neuron type – is given is Table 7.4. The
degree of connectivity is 10%, i.e. each neuron has 100 post synapses, leading to a total
of 100,000 synapses. The stimuli given to the input neurons is 48 Hz over 10 seconds
(which are 10,000 units of simulator time).

tau_m ref_weight tau_ref abs_refr_duration const_threshold
input 20 -0.05 30 3 1
type 1 20 -0.05 30 3 1
type 2 30 -0.05 30 3 1

Table 7.2: Neuron parameters

7.2 Benchmark Procedure

Ten random nets were created with the structure as desribed in the Benchmark Setup
section. Each net is simulated for 1, 10, 100, 1,000 and 10,000 simulator time units. The
simulators used are Inspire, Yinspire and Yinspire/double – a variant of Yinspire which
internally uses double precision floating point operations instead of single-precision

75

7 Performance Benchmark

f weight delay
I/1 → I/1 0.06 1.5
I/1 → 2 0.09 0.8
2 → I/1 0.03 0.8
2 → 2 0.07 0.8

Table 7.4: Synapse parameters (I: input, 1: type 1, 2: type 2)

ones. The latter is used to measure the influence double precision has on performance1,
especially as Inspire uses double precision by default.

All three programs were compiled with -O3 -DNDEBUG flags using the Gnu Compiler
Collection (gcc) in version 4.2.1. The machine used to run the benchmarks was the
following:

• CPU: Intel Core 2 Duo (T7500) @ 2.2 GHz (dual core)

• Main memory: 1.5 GB

• OS: FreeBSD 7.0-STABLE i386

X11 and most other system daemons were disabled and no recording of fire times was
performed. In a second step, the whole benchmark was repeated to measure scalability
of the dual core CPU by running two simulator processes in parallel with the exact
same simulations.

Note that the version of Inspire used is the one supplied with Gereon’s study the-
sis. This step has become neccessary since the most recent versions of Inspire use a
GraphML-based loader which itself takes far longer to load the net than to simulate it.

7.3 Results

Figure 7.1 shows the runtime averaged over all ten nets for the various simulators using
a concurrency of 1 and 2. The increase in runtime for two simulations in parallel
(concurrecy 2) is only marginally, which means that in this case the dual-core CPU
(and the operating system) scales perfectly. The figure further illustrates that Inspire
is slighly faster for simulation times less than 50. This is due to the more complex
file format used for net and spike definitions in Yinspire which results in a higher
startup cost. Apart from that, both Yinspire and Yinspire/double exhibit superior
performance. This fact is again pictured in the speedup diagram in Figure 7.2, which
shows for the 10-second case (simulation time 10,000) a 27-fold increase in performance
for Yinspire over Inspire and still a 17-fold increase for Yinspire/double. For the full

1Because double precision requires twice as much memory as single precision and the most
performance-critical operations occur inside the priority queue which copies a lot of memory around,
it is assumed that this increase in memory copy operations will most likely be the reason for a de-
crease in performance.

76

7.3 Results

data, including min and max runtimes, see Table 7.5. Memory usage is shown in Table
7.6.

 1

 10

 100

 1000

 1 10 100 1000 10000

R
un

 ti
m

e
(s

)

Simulated time

Inspire (c2)
Inspire

Yinspire/double (c2)
Yinspire/double

Yinspire (c2)
Yinspire

Figure 7.1: Runtime of Yinspire and Inspire

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27

 1 10 100 1000 10000

Sp
ee

du
p

Simulated time

Yinspire over Inspire
Yinspire/double over Inspire

Figure 7.2: Speedup of Yinspire over Inspire

77

7 Performance Benchmark

Simulated time 1 10 100 1000 10000
Concurrency 1

Inspire Tavg 0.98 0.98 3.31 44.75 458.76
Inspire Tmin 0.96 0.94 2.89 44.20 454.48
Inspire Tmax 0.99 1.01 3.93 45.86 465.60
Yinspire Tavg 2.35 2.36 2.63 3.98 17.26
Yinspire Tmin 2.33 2.34 2.56 3.87 17.10
Yinspire Tmax 2.37 2.37 2.66 4.11 17.39
Yinspire/double Tavg 2.35 2.35 2.71 4.95 26.40
Yinspire/double Tmin 2.33 2.34 2.63 4.73 25.91
Yinspire/double Tmax 2.37 2.37 2.74 5.09 26.57

Concurrency 2
Inspire Tavg 0.99 1.00 3.50 49.82 514.64
Inspire Tmin 0.95 0.97 2.97 48.76 510.35
Inspire Tmax 1.02 1.02 4.23 50.65 523.27
Yinspire Tavg 2.35 2.36 2.64 4.31 20.69
Yinspire Tmin 2.33 2.34 2.56 4.16 20.01
Yinspire Tmax 2.37 2.39 2.69 4.40 21.37
Yinspire/double Tavg 2.35 2.35 2.74 5.22 29.14
Yinspire/double Tmin 2.33 2.32 2.66 4.96 28.12
Yinspire/double Tmax 2.37 2.38 2.81 5.37 29.69

Table 7.5: Benchmark results. Runtime in seconds.

Simulated time 1 10 100 1000 10000
Inspire Tavg 20.03 20.04 20.04 20.04 20.04
Inspire Tmin 19.97 20.00 20.00 20.00 20.00
Inspire Tmax 20.05 20.05 20.05 20.05 20.05
Yinspire Tavg 15.61 15.68 16.52 16.52 16.54
Yinspire Tmin 15.58 15.68 16.30 16.30 16.38
Yinspire Tmax 15.63 15.69 16.59 16.59 16.59
Yinspire/double Tavg 17.74 17.89 19.40 19.41 19.43
Yinspire/double Tmin 17.71 17.88 19.20 19.22 19.25
Yinspire/double Tmax 17.78 17.90 19.50 19.50 19.50

Table 7.6: Benchmark results. Memory usage in MB.

7.4 Validation

To make sure that we don’t compare apples and oranges in the benchmark shown
above, all fire times were recorded separately for each simulation performed. To ease
this task, Inspire was slightly enhanced (see Figure 7.3) to print out the fire times in the

78

7.5 Conclusion

same way Yinspire does. The number of fire times each simulator produces was then
compared to assure that all three simulators (Inspire, Yinspire and Yinspire/double)
do a similar amount of work, otherwise the numbers shown in Section 7.3 wouldn’t be
comparative at all.

The deviation of the number of fire times in relation to Inspire is given in Table 7.7.
In the 10-second case (simulation time 10,000), the deviation is below 1.5% and can’t
influence performance much given the 17 to 27-fold increase in performance of Yinspire.

7.5 Conclusion

The benchmark present in this chapter clearly shows the superior performance of Yin-
spire, which outperforms Inspire in the 10-second case (also used by Gereon in his
benchmark) by no less than 2700% (!) and still by 1700% when using double-precision
floats.

−−− a/KernelBasedLIFNeuron . cpp
+++ b/KernelBasedLIFNeuron . cpp
@@ −59,6 +59 ,10 @@ void KernelBasedLIFNeuron : : f i r e (double now) {

i f (arpTime > 0) {
absRefPeriod = true ;

}
+
+#i f d e f FIX_OUTPUT
+ ce r r << id << "\ t ! \ t " << now << endl ;
+#end i f

Figure 7.3: Patching Inspire to record fire times.

Net 1 10 100 1000 10000
1 0.00 0.00 0.00 0.00 -3.07 -4.74 -0.16 -5.44 -0.01 -0.52
2 0.00 0.00 0.00 0.00 1.65 -2.50 0.21 -0.06 -0.42 -0.40
3 0.00 0.00 0.00 0.00 0.79 1.30 0.05 0.03 -0.86 -0.47
4 0.00 0.00 0.00 0.00 -0.44 -2.65 -4.85 -0.15 -0.92 -1.43
5 0.00 0.00 0.00 0.00 -0.09 -3.12 -4.60 -5.65 -0.83 -0.97
6 0.00 0.00 0.00 0.00 4.60 -0.08 -4.26 -5.22 -1.32 -0.93
7 0.00 0.00 0.00 0.00 7.67 2.73 0.62 -4.42 -0.76 -0.42
8 0.00 0.00 0.00 0.00 3.05 11.88 -3.38 -7.66 -1.15 -1.24
9 0.00 0.00 0.00 0.00 -1.29 0.93 -0.20 0.03 -0.46 -0.87
10 0.00 0.00 0.00 0.00 -5.38 0.40 -0.56 -5.30 -0.90 -1.35

Table 7.7: Deviation (in per cent) of the number of fire times of Yinspire (first sub-
column) and Yinspire/double (second) in relation to Inspire.

79

8 Benchmarking Priority Queues

As the most frequent and time-consuming operation in an event-driven simulator is to
enqueue or dequeue an event into a priority queue, a great amount of time was spent
to investigate various priority queue algorithms. This finally led to this benchmark,
where the following algorithms were compared:

• (Implicit) Binary Heap

• Pairing Heap

• Calendar Queue

• StlPq – Priority Queue of STL1 (uses Implicit Binary Heap as well)

The Classic Hold model [Jones, 1986] was used in the experiment with various distribu-
tions (Random, Exponential 1, Uniform 0 2, Triangular 0 1.5 and NegativeTriangular 0
1.5) and queue sizes from 210 to 220. In the Classic Hold model, the size of the priority
queue is constant and a so-called hold operation, which is a dequeue followed by an
enqueue operation, is performed repetitive using the following procedure:

• Setup: Enqueue random elements until the priority queue reaches a size of n.

• Warmup: Perform w hold operations (10,000,000).

• Overhead : Measure the overhead of the loop and the pseudo random number
generator by performing o empty hold operations (100,000,000).

• Hold : Perform m hold operations measuring the time it takes (100,000,000).

The value enqueued into the priority queue during each hold operation depends upon
the value returned by the preceding dequeue operation according to:

enqueue(dequeue() + random)

with random being a random value conforming to one of the distributions mentioned
above.

Three different element structures were used in the benchmark:

• FLOAT (4 bytes): struct { float priority; }

• DOUBLE (8 bytes): struct { double priority; }

• STIMULI (8 bytes): struct { float priority; float weight; }
1Standard Template Library of C++

81

8 Benchmarking Priority Queues

8.1 Results

The following Figures 8.1 to 8.8 show the results of the benchmark, which was performed
on the same machine as described in Section 7.2. All tests were performed twice with
the results averaged. For the Calendar Queue and Pairing Heap algorithms only the
STIMULI element structure was measured, and a chunked and free-list allocator was
used to rule out potential slow memory allocation and to increase cache-friendliness.

Both my Binary Heap implementation and the StlPq algorithm exhibit similar per-
formance, with Binary Heap being slightly faster. As the DOUBLE and STIMULI
variants have to copy twice as much memory, their performance is slightly less than
that of the FLOAT variant. Notice that the Binary Heap/DOUBLE results for small
queue sizes are somewhat flawed, as they are actually faster than the corresponding
FLOAT variant, which must be the result of an imprecise measure. The results of
StlPq/STIMULI indicate that something must be going totally wrong, either in the
compiler or in the implementation of the StlPq algorithm. It might be the case that a
different algorithm is choosen depending on the element structure, but to strengthen
this hypothesis a deeper analysis would become necessary.

The Calendar Queue algorithm exhibits for queue sizes up to 217 near O(1) runtime
complexity and very good absolute performance. For larger queue sizes, performance
drops down heavily, but still exhibits better performance than the Pairing Heap and
better performance than all other tested algorithms for Random and NegativeTriangle
distributinons. The Calendar Queue is also the algorithm whose runtime is most sen-
sible to the distributions. The Paring Heap is in all disciplines slower than all other
tested algorithms.

8.2 Conclusion

The most stable runtime behaviour with varying queue sizes and varying distributions
exhibits the Binary Heap algorithm. It further provides good absolute performance, is
well known and easy to implement. On the other hand, the Calendar Queue provides
near O(1) runtime complexity for queue sizes up to 217 and within that range the
best absolute performance of all tested algorithms. But it is hard to implement, not
as general purpose as a Binary Heap as it requires monotonic increasing priorities,
and runtime might be sensible to the value distribution. As such, the Binary Heap
algorithm was used in Yinspire.

82

8.2 Conclusion

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

10 12 14 16 18 20

M
ea

n
ac

ce
ss

 ti
m

e
(n

s)

Queue size (ld)

Random
Exponential(1)

Uniform(0,2)
Triangular(0,1.5)

NegativeTriangular(0,1.5)

Figure 8.1: Binary Heap/FLOAT

 50

 100

 150

 200

 250

 300

 350

 400

10 12 14 16 18 20

M
ea

n
ac

ce
ss

 ti
m

e
(n

s)

Queue size (ld)

Random
Exponential(1)

Uniform(0,2)
Triangular(0,1.5)

NegativeTriangular(0,1.5)

Figure 8.2: Binary Heap/DOUBLE

83

8 Benchmarking Priority Queues

 100

 150

 200

 250

 300

 350

 400

 450

 500

10 12 14 16 18 20

M
ea

n
ac

ce
ss

 ti
m

e
(n

s)

Queue size (ld)

Random
Exponential(1)

Uniform(0,2)
Triangular(0,1.5)

NegativeTriangular(0,1.5)

Figure 8.3: Binary Heap/STIMULI

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

10 12 14 16 18 20

M
ea

n
ac

ce
ss

 ti
m

e
(n

s)

Queue size (ld)

Random
Exponential(1)

Uniform(0,2)
Triangular(0,1.5)

NegativeTriangular(0,1.5)

Figure 8.4: StlPq/FLOAT

84

8.2 Conclusion

 100

 150

 200

 250

 300

 350

 400

 450

10 12 14 16 18 20

M
ea

n
ac

ce
ss

 ti
m

e
(n

s)

Queue size (ld)

Random
Exponential(1)

Uniform(0,2)
Triangular(0,1.5)

NegativeTriangular(0,1.5)

Figure 8.5: StlPq/DOUBLE

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

10 12 14 16 18 20

M
ea

n
ac

ce
ss

 ti
m

e
(n

s)

Queue size (ld)

Random
Exponential(1)

Uniform(0,2)
Triangular(0,1.5)

NegativeTriangular(0,1.5)

Figure 8.6: StlPq/STIMULI

85

8 Benchmarking Priority Queues

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

10 12 14 16 18 20

M
ea

n
ac

ce
ss

 ti
m

e
(n

s)

Queue size (ld)

Random
Exponential(1)

Uniform(0,2)
Triangular(0,1.5)

NegativeTriangular(0,1.5)

Figure 8.7: Calendar Queue/STIMULI

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

10 12 14 16 18 20

M
ea

n
ac

ce
ss

 ti
m

e
(n

s)

Queue size (ld)

Random
Exponential(1)

Uniform(0,2)
Triangular(0,1.5)

NegativeTriangular(0,1.5)

Figure 8.8: Pairing Heap/STIMULI

86

9 Performance Tips

This chapter describes a number of tips that can help to improve performance and code
quality of an application. A lot of those tips have been applied in Yinspire and are
responsible for it’s extraordinary good performance.

While many approaches exist to improve the performance of an application, the
first approach to consider should always be the choice of an adequate algorithm. But
be careful, as too often it is the case that an algorithm with optimal (or good) time
complexity performs worse on real hardware than an algorithm with non-optimal time
complexity. One example are pointer-intensive tree algorithms that have showed good
performance in the past but are supplanted nowadays more and more by index-oriented
pointer-less (and cache-friendly) algorithms.

But there is more to performance than just the choice of an adequate algorithm as
you can read below.

Keep it simple stupid

Complex software is hard to understand. Hard to understand software is even harder
to optimize. Don’t try to be too genius by using all the design patterns you’ve learned
in the software engineering course if the only thing they add is complexity. Don’t use
more than 72 characters per line!

Avoid dynamic memory allocation

Dynamic allocation of memory can be quite slow on some systems1. Remember that
dynamic memory allocation always involves some algorithms under the hood. The over-
all rule as such is to avoid dynamic memory allocation as much as possible, especially
within time-critical routines. In case you need to allocate a lot of objects of the same
type, investigate in using a free-list allocator together with chunked allocation.

Use generics (templates)

Algorithms that use templates in C++ can be a lot faster than their non-template
counterparts due to improved compile-time specialization and optimization.

Use cache-friendly algorithms

Favor array-based storage over tree-algorithms that use pointers. Think about the
penalties of a cache-miss.

1There is a reason why Firefox 3.0 ships with FreeBSD’s memory allocator on Windows (and other)
systems.

87

9 Performance Tips

Avoid conditionals

Conditional branches can lead to processor-pipeline penalites due to mis-speculation.
Avoid special cases by using sentinel values where possible. In Yinspire, this technique is
used for example for the last_fire_time property which is set to negative infinity when
no fire has yet occured. This avoids a flag has_last_fire_time and the corresponding
conditional.

Avoid copying

In C++ and any other non-garbage-collected language, it is a hard problem to keep
track about who is responsible for freeing dynamically allocated memory. One solution
is to always copy the data avoiding references. This is for example the strategy used
by std::string and in general a common technique found in C++. A garbage collector
has the potential to lead to faster applications by avoiding the need to copy data.

88

10 Outlook

There is a lot left to be done (by others):

• A web-interface for Yinspire, where neural-nets can be uploaded and simulated
on the server-side, without the need to install Yinspire locally. It would be further
desireable to be able to batch-submit a lot of nets at once together with their
simulation parameters, maybe using a web-service interface, and to get notified
(via email) when the batch-jobs have completed.

• A graphical editor for neural-nets based on Yinspire, similar to the prototype
shown in Section 6.2. Intelligent layout algorithms and real-time three-dimensional
neural-net visualization would be advanced features.

• Investigate into: multi-list based priority queue algorithms like Ladder queue
[Tang et al., 2005] or MList [Rick and Thng, 2003], cache-oblivious algorithms like
Funnel Heap [Brodal and Fagerberg, 2002] and parallel priority queues [Rönngren
and Ayani, 1997], [Sanders, 1998], [Grammatikakis and Liesche, 2000]. Bench-
mark each algorithm on current hardware.

• Design and implement new neuron and synapse models. For example multi-
compartment model.

• Build a test-suite to ensure correct behaviour of Yinspire. This could go hand-
in-hand with a benchmark-suite.

• Port Yinspire to Java, C# and/or D1.

• Implement an embarrassingly parallel simulator for spiking neural net which runs
on GPUs, using AMD Stream(tm)2 and/or NVIDIA CUDA(tm)3.

1D http://www.digitalmars.com/d/
2AMD Stream(tm) http://forums.amd.com/forum/categories.cfm?catid=328&zb=6888012
3NVIDIA CUDA(tm) http://www.nvidia.com/object/cuda_home.html

89

http://www.digitalmars.com/d/
http://forums.amd.com/forum/categories.cfm?catid=328&zb=6888012
http://www.nvidia.com/object/cuda_home.html

List of Figures

2.1 Architecture of Yinspire (UML Notation) 12
2.2 Decentralized scheduling architecture of Yinspire 17
2.3 Scheduling-related classes . 18
2.4 Speedup of decentralized over unified global priority queue 19
2.5 NeuralEntity and related classes . 21
2.6 Method connect of classes Neuron and Synapse 25
2.7 Method stimulate of classes Synapse_Base and Neuron_Base 26
2.8 Pseudo-code of method process . 26
2.9 A typical interaction between entities of different types. 27
2.10 Implementation of Neuron_SRM01 . 32
2.11 Implementation of Neuron_SRM02 . 35
2.12 Implementation of Neuron_LIF01 (method process) 37
2.13 Implementation of Neuron_LIF01 (method process_stepped) 38
2.14 Implementation of Neuron_Input . 40
2.15 Implementation of Neuron_Output . 41
2.16 Implementation of Synapse_Default . 42
2.17 Implementation of Synapse_Hebb . 44
2.18 EBNF of Yin File Format . 46
2.19 Example Yin file . 47
2.20 Command-Line Usage of yinspire . 49
2.21 Graphical Representation of a Neural-Net using Graphviz/dot 49

3.1 Embedding Yinspire in your Application (App.cc) 52
3.2 Makefile to compile App.cc . 53
3.3 Template for a Neuron model . 55
3.4 Changes to App.cc to use our new model Neuron_Template. 56

4.1 CMake on Windows . 58
4.2 CMake - Choose the generator . 59
4.3 CMake - Set compile options . 59
4.4 Building Yinspire with Visual C++ Express Edition 60
4.5 Running Yinspire from the Command Prompt 60

5.1 Running a simulation with ruby-yinspire. 61
5.2 Advanced example using ruby-yinspire. 62
5.3 Running a simulation with mex-yinspire. 65
5.4 Advanced example using mex-yinspire. 66

91

List of Figures

6.1 Cplus2Ruby example code . 70
6.2 Approximate C++ code generated by Cplus2Ruby 71
6.3 Command-Line usage of Yinspire/C++Ruby 72
6.4 Screenshot of prototype Yinspire GUI 73

7.1 Runtime of Yinspire and Inspire . 77
7.2 Speedup of Yinspire over Inspire . 77
7.3 Patching Inspire to record fire times. 79

8.1 Binary Heap/FLOAT . 83
8.2 Binary Heap/DOUBLE . 83
8.3 Binary Heap/STIMULI . 84
8.4 StlPq/FLOAT . 84
8.5 StlPq/DOUBLE . 85
8.6 StlPq/STIMULI . 85
8.7 Calendar Queue/STIMULI . 86
8.8 Pairing Heap/STIMULI . 86

92

List of Tables

2.1 Parameters of Neuron_SRM01 . 31
2.2 Parameters of Neuron_SRM02 . 34
2.3 Parameters of Neuron_LIF01 . 36
2.4 Parameters of Synapse_Default . 42
2.5 Parameters of Synapse_Hebb . 43

7.2 Neuron parameters . 75
7.4 Synapse parameters (I: input, 1: type 1, 2: type 2) 76
7.5 Benchmark results. Runtime in seconds. 78
7.6 Benchmark results. Memory usage in MB. 78
7.7 Deviation (in per cent) of the number of fire times of Yinspire (first

sub-column) and Yinspire/double (second) in relation to Inspire. 79

93

Bibliography

G. Brodal and R. Fagerberg. Funnel heap — a cache oblivious priority queue. In
Proc. 13th Annual International Symposium on Algorithms and Computation, vol-
ume 2518 of LNCS, pages 219–228. Springer, 2002. URL citeseer.ist.psu.edu/
brodal02funnel.html.

F. Feldbusch and F. Kaiser. Simulation of spiking neural nets with inspire me. ein-
gereicht bei IEEE-SCM 05, 2005.

Miltos D. Grammatikakis and Stefan Liesche. Priority queues and sorting methods
for parallel simulation. Software Engineering, 26(5):401–422, 2000. URL citeseer.
ist.psu.edu/grammatikakis00priority.html.

D. W. Jones. An empirical comparison of priority-queue and event-set implementations.
Communications ACM, 29:300–311, 1986.

Rick and Ian L. Thng. Mlist: an efficient pending event set structure for discrete event
simulation. International Journal of Simulation, 4, December 2003.

Robert Rönngren and Rassul Ayani. A comparative study of parallel and sequential
priority queue algorithms. ACM Trans. Model. Comput. Simul., 7(2):157–209, 1997.
ISSN 1049-3301. doi: http://doi.acm.org/10.1145/249204.249205.

Peter Sanders. Randomized priority queues for fast parallel access. Journal of Par-
allel and Distributed Computing, 49(1):86–97, 1998. URL citeseer.ist.psu.edu/
sanders97randomized.html.

Herbert D. Schwetman. Introduction to process-oriented simulation and csim (tutorial
session). In WSC’ 90: Proceedings of the 22nd conference on Winter simulation,
pages 154–157, Piscataway, NJ, USA, 1990. IEEE Press. ISBN 0-911801-72-3.

Wai Teng Tang, Rick Siow Mong Goh, and Ian Li-Jin Thng. Ladder queue: An o(1)
priority queue structure for large-scale discrete event simulation. ACM Trans. Model.
Comput. Simul., 15(3):175–204, 2005. ISSN 1049-3301. doi: http://doi.acm.org/10.
1145/1103323.1103324.

Gereon Weiß. Ein geschwindigkeitsoptimierter simulator für gepulste neuronale netze.
2005.

95

citeseer.ist.psu.edu/brodal02funnel.html
citeseer.ist.psu.edu/brodal02funnel.html
citeseer.ist.psu.edu/grammatikakis00priority.html
citeseer.ist.psu.edu/grammatikakis00priority.html
citeseer.ist.psu.edu/sanders97randomized.html
citeseer.ist.psu.edu/sanders97randomized.html

	Nomenclature
	Introduction
	Overview

	Architecture and Implementation
	Overview
	Scheduling
	Introduction
	Event-driven Simulation
	Process-oriented Simulation
	Implementation of Yinspire

	Neural Core
	Overview
	Allocating and initializing entities
	Connecting entities
	Stimulating entities
	Processing stimuli
	A typical Interaction between Entities

	Structural Entities
	Models
	Neuron_SRM01
	Neuron_SRM02
	Neuron_LIF01
	Neuron_Input
	Neuron_Output
	Synapse_Default
	Synapse_Hebb

	Miscellaneous Classes
	The Yin File Format
	Converters
	Command-Line Interface

	Extending Yinspire
	Embedding Yinspire
	Compilation

	Implementing a new Model

	Installation
	Unix
	Windows
	Cross-Compilation

	Interfaces to Foreign Languages
	Ruby Interface
	Installation
	Usage
	Reference

	Octave/Matlab Interface
	Installation
	Usage
	Reference

	Prototypes
	Yinspire in Cplus2Ruby
	How it works
	Installation and Usage
	Conclusion

	An Editor for Neural Nets

	Performance Benchmark
	Benchmark Setup
	Benchmark Procedure
	Results
	Validation
	Conclusion

	Benchmarking Priority Queues
	Results
	Conclusion

	Performance Tips
	Outlook
	Bibliography

