
 Michael Neumann 1

We.eXplained

Michael Neumann

European Ruby Conference 2005, Munich

mneumann@ntecs.de

Concepts and Internals

mailto:mneumann@ntecs.de

 Michael Neumann 2

What the hell...

Components

Backtracking

Decorations

Stateful

Continuations
Callbacks

Snapshots

 Michael Neumann 3

What the hell...

Components

Backtracking

Decorations

Stateful

Continuations? Callbacks
Snapshots

 Michael Neumann 4

Introduction

● What is Wee?
– A component oriented, stateful web engine,

largely inspired by Seaside2 and Avi Bryant.

– See the demo.

IOWAWebObjects Seaside2

Borges Wee

Continuations

 Michael Neumann 5

Hello W(ee)orld

 require 'wee'

 class HelloWorld < Wee::Component
 def render; r.text „Hello World“ end
 end

 Wee.run(HelloWorld)
 # => http://localhost:2000/app

 require 'wee'

 class HelloWorld < Wee::Component
 def render
 r.h1.onclick_callback { @v = !@v }.with {
 r.text(@v ? "Bye bye world" : "Hello world")
 }
 end
 end

 Wee.run(HelloWorld)

 Michael Neumann 6

Analysing GUIs

● Modern GUIs are constructed out of
individual components (or „widgets“).

TabControl
GroupBox

DateInput

IconView

ScrollBar

PushButton

TextInput
Dialog

 Michael Neumann 7

Analysing GUIs - State

● Each component stores it's own current
visual UI state, e.g.
– selected item
– collapse info of a TreeView

 Michael Neumann 8

Analysing GUIs - Display

● A component can paint itself onto
something (called a canvas here).

 Michael Neumann 9

Analysing GUIs - Callbacks

● Interaction from outsite can solely
happen through explicitly exposed
callbacks which are bound to specific
events. They modify state!

 Michael Neumann 10

Analysing GUIs - Composition

● Composition is used to build more
complex components.

● Parents...
– ... can intercept events sent to their children. (?)

– ... are responsible to paint their children. (?)

 Michael Neumann 11

UIs in Wee

● Except paint is now called render, and
the output is text/html, everything
applies ;-)

● An application in Wee is constructed out
of commponents. Thus:

– You can reuse components!
– BUT:

 Michael Neumann 12

Reusable Components

● More a dream than reality!
– It's hard to build reusable components.

● Customization through:
– Subclassing (overwrite methods)
– CSS

 Michael Neumann 13

A Compositional Problem

● Wrap Window inside a GroupBox!?
– (Or draw a a border around the Window)

 Michael Neumann 14

„Simple“ Solution

No DecorationsInitial Setting

Modify Tree

BUT: What if the parent is unknown?

 Michael Neumann 15

The „decorative“ Solution

With DecorationsInitial Setting

Add Decoration

Advantage: No need to modify the tree!

 Michael Neumann 16

Decorations

● Changing the look and/or behaviour of
components without modifying the
compositional relation.

● Examples:

– draw header/footer around them
– intercept callback processing (e.g.

LoginDecoration)

 Michael Neumann 17

Uses of Decorations

● WrapperDecoration, PageDecoration,
FormDecoration

● LoginDecoration
● Delegate, AnswerDecoration

 Michael Neumann 18

WrapperDecoration

class HeaderFooter < Wee::WrapperDecoration

 def render_wrapper

 r.text „header“

 yield # render the component

 r.text „footer“

 end

end

c = MyComponent.new.add_decoration(HeaderFooter.new)

Renders a header and footer around a component.

 Michael Neumann 19

PageDecoration

class Wee:PageDecoration < Wee::WrapperDecoration

 def initialize(title='')

 @title = title

 super()

 end

 def global?() true end

private

 def render_wrapper

 r.page.title(@title).with { yield }

 end

end

<html>
 <head>
 <title>...</title>
 </head>
 <body>
 ...
 </body>
</html>

 Michael Neumann 20

FormDecoration

● Simply renders a <form> tag around a
component.

● Why? By wrapping a set of components
inside of one form tag, the entered
values will not get lost upon submit!

Form 1

Name:

Form 2

Name:

Click here and ...

... loose that

Form 1

Name: Name:

SubmitSubmit

Click here don't loose that!

Multiple Form Tags One Form Tag

Submit

Submit

 Michael Neumann 21

FormDecoration

● Simply renders a <form> tag around a
component.

● Why? By wrapping a set of components
inside of one form tag, the entered
values will not get lost upon submit!

Form 1

Name:

Form 2

Name:

SubmitClick here and ...

... loose that

Form 1

Name: Name:

SubmitSubmit

Click here don't loose that!

Multiple Form Tags One Form Tag

Today: Use AJAX!?

Submit

 Michael Neumann 22

LoginDecoration

● Redirect all requests to a Login page
unless logged_in?

● Else: Pass all requests through
● See: login_page.rb

 Michael Neumann 23

Delegate decoration

● Like LoginDecoration, but
unconditionally.

● Introduced later (together with
AnswerDecoration) when we look at the
call/answer mechanism.

 Michael Neumann 24

Implementation of Decorations

(1)

(2) (3a) (3b)

(1) The component will pass control to it's
 first decoration in the chain.

(2) A decoration owns all „following“
 decorations. It might proceed or stop here.

(3a) The next decoration is in control.
 Proceed with (2).

(3b) We reached „self“ (the initial component).
 We're ready!

Note that Decoration and Component share a similar interface.
That's why 'decoration' can point back to self.

 Michael Neumann 25

call/answer mechanism
● Think of a „procedure call stack“

(call/return).

● Demo
class Counter < Wee::Component
 def initialize; @cnt = 0; super end
 def render
 r.anchor.callback(:dec).with('--')
 r.text „ #{ @cnt } “
 r.anchor.callback(:inc).with('++')
 end
 def dec
 if @cnt == 0
 call MessageBox.new('Go Negative?'),
 proc {|cond| @cnt -= 1 if cond }
 else
 @cnt -= 1
 end
 end
 def inc; @cnt += 1 end
end

class MessageBox < Wee::Component
 def initialize(title)
 @title = title; super()
 end
 def render
 r.form do
 r.h1 @title
 r.submit_button.value('YES').
 callback(:answer, true)
 r.submit_button.value('NO').
 callback(:answer, false)
 end
 end
end

 Michael Neumann 26

call/answer (cont')

● Components can replace themself
temporaryly with another component
(call), until the called component gives
control back to the calling component
(answer).

 Michael Neumann 27

Implementation of call

● Simply add a Delegate decoration to the calling
component:

def call(component, on_answer=nil)
 delegate = Delegate.new(delegate_to=component)
 self.add_decoration(delegate)
 ...

● But that's not enough. We need an
AnswerDecoration as well.

 ...
 answer = AnswerDecoration.new
 answer.on_answer = on_answer
 component.add_decoration(answer)
 ...

 Michael Neumann 28

Implementation of call (2)

● Why an AnswerDecoration?

– To be able to use a component calling
answer like any other component.

– „return without call“!

 Michael Neumann 29

Implementation of call (3)

● Still not enough!

 ...
 throw :wee_abort_callback_processing
end

● Only slightly different in the „continuation“
case, but usage is much easier:

class Counter < Wee::Component
 ...
 def dec
 @cnt -= 1 if @cnt > 0 or call MessageBox.new('Go Negative?')
 end
 ...
end

 Michael Neumann 30

Implementation of answer

● Simply removes the Delegate decoration from
the calling component and invokes the
on_answer callback.

 Michael Neumann 31

URLs in Wee

● You'll never have to touch them
manually.
http:// hostname / mount-point / info-part / separator / session-id / page-id ? callbacks
http://localhost/demo/arbitrary/info/___/b2fb...7cb/1

● Page-Id will increase after every „action“
(see Backtracking).

 Michael Neumann 32

A Wee Cycle

def render
 r.form do
 r.text_input.value(@name).callback {|@name|}
 r.submit_button.value(„OK“).callback { p @name }
 end
end

● Imagine following code:

<form method=“GET“ action=“/..../___/sid/120“>
 <input type=“text“ value=““ name=“1“ />
 <input type=“submit“ value=“OK“ name=“2“ />
</form>

● This will generate HTML like this:

mailto:%7B%7C@name

 Michael Neumann 33

A Wee Cycle (cont')
● Upon form submission the following happens:

– The Page-id is extracted from the submitted URL.
● http://...../___/sid/120?1=blah&2=OK

– Lookup the page with that id from the PageStore. A page
is just the snapshot of a certain state of the components
tree + registered callbacks.

– Restore the components tree to that state.

– Invoke the supplied callbacks.
● All input callbacks (e.g. text-fields) before the final action callback

(submit-button, anchor).

– Generate new Page-Id. Take a snapshot of the whole
components tree and store it under that id.

– Redirect to the new Page-id excluding the callbacks:
● http://...../___/sid/121

Modifies State!

@name = „blah“
p @name

 Michael Neumann 34

A Wee Cycle (cont')
● The client follows the redirect (http://...../___/sid/121):

– Lookup page 121 and apply it's state to the components
tree.

– Render the components tree.
● Callbacks are registered and stored in the page object of id 121.
● All generated URLs include the current page id (121), or in other

words, the context in which the callbacks should be invoked.

def render
 r.form do
 r.text_input.value(@name).callback {|@name|}
 r.submit_button.value(„OK“).callback { p @name }
 end
end

Side-Effect free!

mailto:%7B%7C@name

 Michael Neumann 35

Backtracking

● „Undo/Redo“-Facility.
● You can use the back-button again!
● See the demo.

 Michael Neumann 36

Backtracking - Implementation

● Simply take a snapshot of all the objects
that are of interest (e.g. the current
value of a counter).

● Later, restore them!
● Page-id's to make unique URLs and to

reference the snapshots.

 Michael Neumann 37

Continuations

● But: In some (rare?) situations, continuations leak
memory! Be careful.

● And: You need one thread per session!

 ...
 def action

 loop do
 if (call MessageBox.new('2 + 3 = 5?')) and
 (call MessageBox.new('3 + 4 = 7?')) then
 call TextBox.new('Genius!')
 break
 else
 call TextBox.new('Please try again!')
 end
 end

 end
 ...
end

● Try the same without continuations... you need a state
machine!

 Michael Neumann 38

Is Wee for me?
● Maybe if...

– your application is very dynamic.

– you can easily recognize and extract parts of the
page as components (it has a „regular“ structure).

– you need to operate on very complex in-memory
objects.

– you don't like Javascript ;-)

– your application is more complex than just CRUD.

– bookmarkable URLs are not a requirement.

– you think backtracking is a nice thing.

– you really want to use continuations.

– you hire me to continue Wee's development ;-)

 Michael Neumann 39

Reasons why not

● No community. Development stalled.

● URLs are not bookmarkable (this is just impossible due
to it's dynamic nature).

● It's stateful.

● Maybe too dynamic for you ;-)

● It's easy to introduce inconsistencies when using Og
(ORM) due to object caching. Solution: Disable caching
or manually reload the domain objects.

 Michael Neumann 40

Questions?

 Michael Neumann 41

Thank you!

 Michael Neumann 42

Resources

● Wee: http://rubyforge.org/projects/wee
● Seaside2: http://www.seaside.st/
● Borges: http://borges.rubyforge.org/
● IOWA: http://enigo.com/projects/iowa/

http://rubyforge.org/projects/wee
http://www.seaside.st/
http://borges.rubyforge.org/
http://enigo.com/projects/iowa/

	TextBox: abcd
	TextBox1: abcd
	PushButton:
	TextBox2: ruby
	PushButton1:
	PushButton2:
	TextBox3: ruby
	PushButton3:
	TextBox:
	PushButton:
	TextBox1:
	PushButton1:
	TextBox2:
	PushButton2:
	PushButton3:
	TextBox3:

